Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 85: 765-92, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27050287

RESUMO

Neutrophils are essential for killing bacteria and other microorganisms, and they also have a significant role in regulating the inflammatory response. Stimulated neutrophils activate their NADPH oxidase (NOX2) to generate large amounts of superoxide, which acts as a precursor of hydrogen peroxide and other reactive oxygen species that are generated by their heme enzyme myeloperoxidase. When neutrophils engulf bacteria they enclose them in small vesicles (phagosomes) into which superoxide is released by activated NOX2 on the internalized neutrophil membrane. The superoxide dismutates to hydrogen peroxide, which is used by myeloperoxidase to generate other oxidants, including the highly microbicidal species hypochlorous acid. NOX activation occurs at other sites in the cell, where it is considered to have a regulatory function. Neutrophils also release oxidants, which can modify extracellular targets and affect the function of neighboring cells. We discuss the identity and chemical properties of the specific oxidants produced by neutrophils in different situations, and what is known about oxidative mechanisms of microbial killing, inflammatory tissue damage, and signaling.


Assuntos
Cloraminas/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácido Hipocloroso/metabolismo , Neutrófilos/imunologia , Superóxidos/metabolismo , Tiocianatos/metabolismo , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Cloraminas/imunologia , Expressão Gênica , Humanos , Peróxido de Hidrogênio/imunologia , Ácido Hipocloroso/imunologia , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Oxirredução , Peroxidase/genética , Peroxidase/imunologia , Transdução de Sinais , Superóxidos/imunologia , Acetato de Tetradecanoilforbol/farmacologia , Tiocianatos/imunologia , Zimosan/farmacologia
2.
Immunol Rev ; 314(1): 181-196, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36609987

RESUMO

The burst of superoxide produced when neutrophils phagocytose bacteria is the defining biochemical feature of these abundant immune cells. But 50 years since this discovery, the vital role superoxide plays in host defense has yet to be defined. Superoxide is neither bactericidal nor is it just a source of hydrogen peroxide. This simple free radical does, however, have remarkable chemical dexterity. Depending on its environment and reaction partners, superoxide can act as an oxidant, a reductant, a nucleophile, or an enzyme substrate. We outline the evidence that inside phagosomes where neutrophils trap, kill, and digest bacteria, superoxide will react preferentially with the enzyme myeloperoxidase, not the bacterium. By acting as a cofactor, superoxide will sustain hypochlorous acid production by myeloperoxidase. As a substrate, superoxide may give rise to other forms of reactive oxygen. We contend that these interactions hold the key to understanding the precise role superoxide plays in neutrophil biology. State-of-the-art techniques in mass spectrometry, oxidant-specific fluorescent probes, and microscopy focused on individual phagosomes are needed to identify bactericidal mechanisms driven by superoxide. This work will undoubtably lead to fascinating discoveries in host defense and give a richer understanding of superoxide's varied biology.


Assuntos
Neutrófilos , Superóxidos , Humanos , Neutrófilos/microbiologia , Superóxidos/farmacologia , Peroxidase/farmacologia , Fagocitose , Oxidantes/farmacologia , Ácido Hipocloroso/análise , Ácido Hipocloroso/farmacologia , Antibacterianos , Biologia
3.
J Immunol ; 208(4): 979-990, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35046105

RESUMO

Calprotectin is released by activated neutrophils along with myeloperoxidase (MPO) and proteases. It plays numerous roles in inflammation and infection, and is used as an inflammatory biomarker. However, calprotectin is readily oxidized by MPO-derived hypohalous acids to form covalent dimers of its S100A8 and S100A9 subunits. The dimers are susceptible to degradation by proteases. We show that detection of human calprotectin by ELISA declines markedly because of its oxidation by hypochlorous acid and subsequent degradation. Also, proteolysis liberates specific peptides from oxidized calprotectin that is present at inflammatory sites. We identified six calprotectin-derived peptides by mass spectrometry and detected them in the bronchoalveolar lavage fluid of children with cystic fibrosis (CF). We assessed the peptides as biomarkers of neutrophilic inflammation and infection. The content of the calprotectin peptide ILVI was related to calprotectin (r = 0.72, p = 0.01, n = 10). Four of the peptides were correlated with the concentration of MPO (r > 0.7, p ≤ 0.01, n = 21), while three were higher (p < 0.05) in neutrophil elastase-positive (n = 14) than -negative samples (n = 7). Also, five of the peptides were higher (p < 0.05) in the bronchoalveolar lavage fluid from children with CF with infections (n = 21) than from non-CF children without infections (n = 6). The specific peptides liberated from calprotectin will signal uncontrolled activity of proteases and MPO during inflammation. They may prove useful in tracking inflammation in respiratory diseases dominated by neutrophils, including coronavirus disease 2019.


Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Fibrose Cística/imunologia , Inflamação/imunologia , Complexo Antígeno L1 Leucocitário/metabolismo , Neutrófilos/imunologia , Peptídeos/metabolismo , Sistema Respiratório/metabolismo , Criança , Pré-Escolar , Fibrose Cística/diagnóstico , Feminino , Humanos , Inflamação/diagnóstico , Complexo Antígeno L1 Leucocitário/genética , Complexo Antígeno L1 Leucocitário/imunologia , Masculino , Ativação de Neutrófilo , Oxirredução , Peptídeos/genética , Peptídeos/imunologia , Proteólise
4.
J Immunol ; 206(8): 1901-1912, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33753427

RESUMO

Neutrophils are often the major leukocyte at sites of mycobacterial infection, yet little is known about their ability to kill mycobacteria. In this study we have investigated whether the potent antibacterial oxidant hypochlorous acid (HOCl) contributes to killing of Mycobacterium smegmatis when this bacterium is phagocytosed by human neutrophils. We found that M. smegmatis were ingested by neutrophils into intracellular phagosomes but were killed slowly. We measured a t 1/2 of 30 min for the survival of M. smegmatis inside neutrophils, which is 5 times longer than that reported for Staphylococcus aureus and 15 times longer than Escherichia coli Live-cell imaging indicated that neutrophils generated HOCl in phagosomes containing M. smegmatis; however, inhibition of HOCl production did not alter the rate of bacterial killing. Also, the doses of HOCl that are likely to be produced inside phagosomes failed to kill isolated bacteria. Lethal doses of reagent HOCl caused oxidation of mycothiol, the main low-m.w. thiol in this bacterium. In contrast, phagocytosed M. smegmatis maintained their original level of reduced mycothiol. Collectively, these findings suggest that M. smegmatis can cope with the HOCl that is produced inside neutrophil phagosomes. A mycothiol-deficient mutant was killed by neutrophils at the same rate as wild-type bacteria, indicating that mycothiol itself is not the main driver of M. smegmatis resistance. Understanding how M. smegmatis avoids killing by phagosomal HOCl could provide new opportunities to sensitize pathogenic mycobacteria to destruction by the innate immune system.


Assuntos
Antibacterianos/metabolismo , Ácido Hipocloroso/metabolismo , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium smegmatis/fisiologia , Neutrófilos/metabolismo , Fagossomos/metabolismo , Células Cultivadas , Cisteína/metabolismo , Glicopeptídeos/metabolismo , Humanos , Evasão da Resposta Imune , Imunidade Inata , Inositol/metabolismo , Infecções por Mycobacterium não Tuberculosas/microbiologia , Neutrófilos/imunologia , Fagocitose
5.
Infect Immun ; 90(3): e0053021, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35156851

RESUMO

Streptococcus pneumoniae is a serious human respiratory pathogen. It generates hydrogen peroxide (H2O2) as part of its normal metabolism, yet it lacks enzymes that remove this oxidant. Here we show that lactoperoxidase and myeloperoxidase, two host enzymes present in the respiratory tract, convert bacterial H2O2 into HOSCN that S. pneumoniae can resist. We found that incubation of S. pneumoniae with myeloperoxidase in chloride-rich buffer killed the bacteria due to formation of toxic hypochlorous acid (HOCl). However, the addition of physiological concentrations of thiocyanate protected the bacteria. Similarly, S. pneumoniae remained viable in the presence of lactoperoxidase and thiocyanate even though the majority of bacterial H2O2 was converted to hypothiocyanous acid (HOSCN). S. pneumoniae and Pseudomonas aeruginosa, another respiratory pathogen, were similarly sensitive to H2O2 and HOCl. In contrast, S. pneumoniae tolerated much higher doses of HOSCN than P. aeruginosa. When associated with neutrophil extracellular traps (NETs), S. pneumoniae continued to generate H2O2, which was converted to HOCl by myeloperoxidase (MPO) present on NETs. However, there was no loss in bacterial viability because HOCl was scavenged by the NET proteins. We conclude that at sites of infection, bacteria will be protected from HOCl by thiocyanate and extracellular proteins including those associated with NETs. Resistance to HOSCN may give S. pneumoniae a survival advantage over other pathogenic bacteria. Understanding the mechanisms by which S. pneumoniae protects itself from HOSCN may reveal novel strategies for limiting the colonization and pathogenicity of this deadly pathogen.


Assuntos
Peroxidase , Streptococcus pneumoniae , Humanos , Peróxido de Hidrogênio , Ácido Hipocloroso/metabolismo , Lactoperoxidase , Peroxidase/metabolismo , Peroxidases , Proteínas , Streptococcus pneumoniae/metabolismo , Tiocianatos
6.
J Biol Chem ; 295(36): 12697-12705, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675287

RESUMO

Peroxidasin is a heme peroxidase that oxidizes bromide to hypobromous acid (HOBr), a powerful oxidant that promotes the formation of the sulfilimine crosslink in collagen IV in basement membranes. We investigated whether HOBr released by peroxidasin leads to other oxidative modifications of proteins, particularly bromination of tyrosine residues, in peroxidasin-expressing PFHR9 cells. Using stable isotope dilution LC-MS/MS, we detected the formation of 3-bromotyrosine, a specific biomarker of HOBr-mediated protein modification. The level of 3-bromotyrosine in extracellular matrix proteins from normally cultured cells was 1.1 mmol/mol tyrosine and decreased significantly in the presence of the peroxidasin inhibitor, phloroglucinol. A negligible amount of 3-bromotyrosine was detected in peroxidasin-knockout cells. 3-Bromotyrosine formed both during cell growth in culture and in the isolated decellularized extracellular matrix when embedded peroxidasin was supplied with hydrogen peroxide and bromide. The level of 3-bromotyrosine was significantly higher in extracellular matrix than intracellular proteins, although a low amount was detected intracellularly. 3-Bromotyrosine levels increased with higher bromide concentrations and decreased in the presence of physiological concentrations of thiocyanate and urate. However, these peroxidase substrates showed moderate to minimal inhibition of collagen IV crosslinking. Our findings provide evidence that peroxidasin promotes the formation of 3-bromotyrosine in proteins. They show that HOBr produced by peroxidasin is selective for, but not limited to, the crosslinking of collagen IV. Based on our findings, the use of 3-bromotyrosine as a specific biomarker of oxidative damage by HOBr warrants further investigation in clinical conditions linked to high peroxidasin expression.


Assuntos
Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Halogenação , Peroxidases/metabolismo , Tirosina/análogos & derivados , Animais , Linhagem Celular , Colágeno Tipo IV/genética , Matriz Extracelular/genética , Camundongos , Peroxidases/genética , Tirosina/genética , Tirosina/metabolismo
7.
Eur J Immunol ; 50(5): 643-655, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31944287

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes that are abundant in mucosal tissues and the liver where they can respond rapidly to a broad range of riboflavin producing bacterial and fungal pathogens. Neutrophils, which are recruited early to sites of infection, play a nonredundant role in pathogen clearance and are crucial for controlling infection. The interaction of these two cell types is poorly studied. Here, we investigated both the effect of neutrophils on MAIT cell activation and the effect of activated MAIT cells on neutrophils. We show that neutrophils suppress the activation of MAIT cells by a cell-contact and hydrogen peroxide dependent mechanism. Moreover, highly activated MAIT cells were able to produce high levels of TNF-α that induced neutrophil death. We therefore provide evidence for a negative regulatory feedback mechanism in which neutrophils prevent overactivation of MAIT cells and, in turn, MAIT cells limit neutrophil survival.


Assuntos
Comunicação Celular/imunologia , Retroalimentação Fisiológica , Imunidade nas Mucosas , Células T Invariantes Associadas à Mucosa/imunologia , Neutrófilos/imunologia , Movimento Celular , Técnicas de Cocultura , Escherichia coli/imunologia , Humanos , Peróxido de Hidrogênio/imunologia , Peróxido de Hidrogênio/metabolismo , Contagem de Leucócitos , Fígado/citologia , Fígado/imunologia , Ativação Linfocitária , Células T Invariantes Associadas à Mucosa/citologia , Mucosa/citologia , Mucosa/imunologia , Neutrófilos/citologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
8.
J Biol Chem ; 294(36): 13502-13514, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31341024

RESUMO

Myeloperoxidase is a major neutrophil antimicrobial protein, but its role in immunity is often overlooked because individuals deficient in this enzyme are usually in good health. Within neutrophil phagosomes, myeloperoxidase uses superoxide generated by the NADPH oxidase to oxidize chloride to the potent bactericidal oxidant hypochlorous acid (HOCl). In this study, using phagocytosis assays and LC-MS analyses, we monitored GSH oxidation in Pseudomonas aeruginosa to gauge their exposure to HOCl inside phagosomes. Doses of reagent HOCl that killed most of the bacteria oxidized half the cells' GSH, producing mainly glutathione disulfide (GSSG) and other low-molecular-weight disulfides. Glutathione sulfonamide (GSA), a HOCl-specific product, was also formed. When neutrophils phagocytosed P. aeruginosa, half of the bacterial GSH was lost. Bacterial GSA production indicated that HOCl had reacted with the bacterial cells, oxidized their GSH, and was sufficient to be solely responsible for bacterial killing. Inhibition of NADPH oxidase and myeloperoxidase lowered GSA formation in the bacterial cells, but the bacteria were still killed, presumably by compensatory nonoxidative mechanisms. Of note, bacterial GSA formation in neutrophils from patients with cystic fibrosis (CF) was normal during early phagocytosis, but it was diminished at later time points, which was mirrored by a small decrease in bacterial killing. In conclusion, myeloperoxidase generates sufficient HOCl within neutrophil phagosomes to kill ingested bacteria. The unusual kinetics of phagosomal HOCl production in CF neutrophils confirm a role for the cystic fibrosis transmembrane conductance regulator in maintaining HOCl production in neutrophil phagosomes.


Assuntos
Antibacterianos/farmacologia , Fibrose Cística/tratamento farmacológico , Ácido Hipocloroso/farmacologia , Neutrófilos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Fibrose Cística/microbiologia , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Dissulfeto de Glutationa/biossíntese , Humanos , Testes de Sensibilidade Microbiana , Neutrófilos/microbiologia , Pseudomonas aeruginosa/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 39(7): 1448-1457, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31043077

RESUMO

Objective- Inflammation-driven endothelial dysfunction initiates and contributes to the progression of atherosclerosis, and MPO (myeloperoxidase) has been implicated as a potential culprit. On release by circulating phagocytes, MPO is thought to contribute to endothelial dysfunction by limiting NO bioavailability via formation of reactive oxidants including hypochlorous acid. However, it remains largely untested whether specific pharmacological inhibition of MPO attenuates endothelial dysfunction. We, therefore, tested the ability of a mechanism-based MPO inhibitor, AZM198, to inhibit endothelial dysfunction in models of vascular inflammation. Approach and Results- Three models of inflammation were used: femoral cuff, the tandem stenosis model of plaque rupture in Apoe-/- mice, and C57BL/6J mice fed a high-fat, high-carbohydrate diet as a model of insulin resistance. Endothelial dysfunction was observed in all 3 models, and oral administration of AZM198 significantly improved endothelial function in the femoral cuff and tandem stenosis models only. Improvement in endothelial function was associated with decreased arterial MPO activity, determined by the in vivo conversion of hydroethidine to 2-chloroethidium, without affecting circulating inflammatory cytokines or arterial MPO content. Mechanistic studies in Mpo-/- mice confirmed the contribution of MPO to endothelial dysfunction and revealed oxidation of sGC (soluble guanylyl cyclase) as the underlying cause of the observed limited NO bioavailability. Conclusions- Pharmacological inhibition of MPO is a potential strategy to limit endothelial dysfunction in vascular inflammation. Visual Overview- An online visual overview is available for this article.


Assuntos
Aterosclerose/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Peroxidase/antagonistas & inibidores , Doenças Vasculares/tratamento farmacológico , Animais , Apolipoproteínas E/fisiologia , Aterosclerose/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/fisiologia , Inibidores Enzimáticos/farmacologia , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase/fisiologia , Doenças Vasculares/fisiopatologia
10.
J Biol Chem ; 293(40): 15715-15724, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30135208

RESUMO

The rhodamine-based probe R19-S has been shown to react with hypochlorous acid (HOCl) to yield fluorescent R19, but not with some other oxidants including hydrogen peroxide. Here, we further examined the specificity of R19-S and used it for real-time monitoring of HOCl production in neutrophil phagosomes. We show that it also reacts rapidly with hypobromous acid, bromamines, and hypoiodous acid, indicating that R19-S responds to these reactive halogen species as well as HOCl. Hypothiocyanous acid and taurine chloramine were unreactive, however, and ammonia chloramine and dichloramine reacted only very slowly. MS analyses revealed additional products from the reaction of HOCl with R19-S, including a chlorinated species as a minor product. Of note, phagocytosis of opsonized zymosan or Staphylococcus aureus by neutrophils was accompanied by an increase in R19 fluorescence. This increase depended on NADPH oxidase and myeloperoxidase activities, and detection of chlorinated R19-S confirmed its specificity for HOCl. Using live-cell imaging to track individual phagosomes in single neutrophils, we observed considerable heterogeneity among the phagosomes in the time from ingestion of a zymosan particle to when fluorescence was first detected, ranging from 1 to >30 min. However, once initiated, the subsequent fluorescence increase was uniform, reaching a similar maximum in ∼10 min. Our results confirm the utility of R19-S for detecting HOCl in real-time and provide definitive evidence that isolated neutrophils produce HOCl in phagosomes. The intriguing variability in the onset of HOCl production among phagosomes identified here could influence the way they kill ingested bacteria.


Assuntos
Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Neutrófilos/enzimologia , Fagocitose , Fagossomos/metabolismo , Rodaminas/química , Bioensaio , Corantes Fluorescentes/metabolismo , Humanos , Ácido Hipocloroso/imunologia , Ácido Hipocloroso/metabolismo , Erros Inatos do Metabolismo/enzimologia , Erros Inatos do Metabolismo/imunologia , Erros Inatos do Metabolismo/patologia , NADPH Oxidases/genética , NADPH Oxidases/imunologia , NADPH Oxidases/metabolismo , Neutrófilos/imunologia , Neutrófilos/patologia , Proteínas Opsonizantes/química , Peroxidase/deficiência , Peroxidase/genética , Peroxidase/imunologia , Fagossomos/imunologia , Fagossomos/ultraestrutura , Cultura Primária de Células , Rodaminas/metabolismo , Espectrometria de Fluorescência , Staphylococcus aureus/imunologia , Zimosan/química
11.
J Biol Chem ; 293(51): 19886-19898, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30385504

RESUMO

Urate is often viewed as an antioxidant. Here, we present an alternative perspective by showing that, when oxidized, urate propagates oxidative stress. Oxidation converts urate to the urate radical and the electrophilic products dehydrourate, 5-hydroxyisourate, and urate hydroperoxide, which eventually break down to allantoin. We investigated whether urate-derived electrophiles are intercepted by nucleophilic amino acid residues to form stable adducts on proteins. When urate was oxidized in the presence of various peptides and proteins, two adducts derived from urate (Mr 167 Da) were detected and had mass additions of 140 and 166 Da, occurring mainly on lysine residues and N-terminal amines. The adduct with a 140-Da mass addition was detected more frequently and was stable. Dehydrourate (Mr 166 Da) also formed transient adducts with cysteine residues. Urate-derived adducts were detected on human serum albumin in plasma of healthy donors. Basal adduct levels increased when neutrophils were added to plasma and stimulated, and relied on the NADPH oxidase, myeloperoxidase, hydrogen peroxide, and superoxide. Adducts of oxidized urate on serum albumin were elevated in plasma and synovial fluid from individuals with gout and rheumatoid arthritis. We propose that rather than acting as an antioxidant, urate's conversion to electrophiles contributes to oxidative stress. The addition of urate-derived electrophiles to nucleophilic amino acid residues, a process we call oxidative uratylation, will leave a footprint on proteins that could alter their function when critical sites are modified.


Assuntos
Ácido Úrico/química , Aminas/química , Sequência de Aminoácidos , Ativação Enzimática/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Humanos , Inflamação/metabolismo , Modelos Moleculares , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Conformação Proteica , Albumina Sérica/química , Albumina Sérica/metabolismo , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia
12.
Arch Biochem Biophys ; 646: 120-127, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29626421

RESUMO

Peroxidasin is a heme peroxidase that catalyses the oxidation of bromide by hydrogen peroxide to form an essential sulfilimine cross-link between methionine and hydroxylysine residues in collagen IV. We investigated cross-linking by peroxidasin embedded in extracellular matrix isolated from cultured epithelial cells and its sensitivity to alternative substrates and peroxidase inhibitors. Peroxidasin showed peroxidase activity as measured with hydrogen peroxide and Amplex red. Using a specific mass spectrometry assay that measures NADH bromohydrin, we showed definitively that the enzyme releases hypobromous acid (HOBr). Less than 1 µM of the added hydrogen peroxide was used by peroxidasin. The remainder was consumed by catalase activity that was associated with the matrix. Results from NADH bromohydrin measurements indicates that low micromolar HOBr generated by peroxidasin was sufficient for maximum sulfilimine cross-linking, whereas 100 µM reagent HOBr or taurine bromamine was less efficient. This implies selectivity for the enzymatic process. Physiological concentrations of thiocyanate and urate partially inhibited cross-link formation. 4-Aminobenzoic acid hydrazide, a commonly used myeloperoxidase inhibitor, also inhibited peroxidasin, whereas acetaminophen and a 2-thioxanthine were much less effective. In conclusion, HOBr is produced by peroxidasin in the extracellular matrix. It appears to be directed at the site of collagen IV sulfilimine formation but the released HOBr may also undergo other reactions.


Assuntos
Bromatos/química , Brometos/química , Proteínas da Matriz Extracelular/química , Matriz Extracelular/química , Peróxido de Hidrogênio/química , Peroxidase/química , Animais , Bromatos/análise , Linhagem Celular Tumoral , Colágeno Tipo IV/química , Proteínas da Matriz Extracelular/antagonistas & inibidores , Proteínas da Matriz Extracelular/genética , Técnicas de Inativação de Genes , Iminas/química , Espectrometria de Massas , Camundongos , NAD/química , Peroxidase/antagonistas & inibidores , Peroxidase/genética , Peroxidasina
13.
Arch Biochem Biophys ; 646: 80-89, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29614256

RESUMO

When neutrophils engulf bacteria, myeloperoxidase converts hydrogen peroxide to hypochlorous acid, which is toxic to all micro-organisms. It has been suggested that some pathogens have virulence factors that target myeloperoxidase to dampen the oxidative reactions of neutrophils. These virulence factors include staphyloxanthin, the golden pigment of Staphylococcus aureus, and enterobactin - a siderophore released by gram-negative bacteria. We investigated the potential of staphyloxanthin and enterobactin to shield bacteria from hypochlorous acid and related chloramines. Clinical strains of S. aureus with high levels of staphyloxanthin and related carotenoids were in general more resistant to low doses of hypochlorous acid than non-pigmented bacteria. But some non-pigmented strains were also resistant to the oxidant. Doses of reactive chlorine species that killed bacteria also bleached their carotenoids. Hypochlorous acid, NH2Cl, and NHCl2 bleached purified staphyloxanthin. When S. aureus were phagocytosed by neutrophils there was no discernible loss of staphyloxanthin. These data suggest that staphyloxanthin is capable of protecting bacteria from low doses of reactive chlorine species formed inside phagosomes. Enterobactin was not an inhibitor of myeloperoxidase. We conclude that staphyloxanthin may protect some bacterial strains against oxidative killing by neutrophils, but enterobactin will not inhibit the production of hypochlorous acid.


Assuntos
Antioxidantes/metabolismo , Ácido Hipocloroso/metabolismo , Neutrófilos/metabolismo , Xantofilas/metabolismo , Antioxidantes/química , Antioxidantes/isolamento & purificação , Cloraminas/química , Enterobactina/farmacologia , Ensaios Enzimáticos , Inibidores Enzimáticos/farmacologia , Humanos , Ácido Hipocloroso/química , Oxirredução , Peroxidase/antagonistas & inibidores , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , Xantofilas/química , Xantofilas/isolamento & purificação
14.
Anal Biochem ; 544: 13-21, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29258826

RESUMO

Myeloperoxidase, an abundant neutrophil enzyme, promotes oxidative damage during inflammation by generating hypohalous acids and free radicals. Currently, there are no selective drugs to inhibit its adverse activity. This short-coming is partly due to the lack of screening assays that mimic the complex enzymatic activities of myeloperoxidase in vivo. We have developed an assay for myeloperoxidase activity that includes its major physiological substrates - chloride, thiocyanate, tyrosine, and urate. The multi-substrate assay monitors bleaching of 5-thio-2-nitrobenzoic acid and measures total oxidant production when hydrogen peroxide activates the enzyme. Known suicide inhibitors and tight-binders tested positive in the assay, whereas compounds that merely convert myeloperoxidase to reducible enzyme intermediates were poor inhibitors. The new assay revealed that some aromatic compounds, including tryptamine, inhibit myeloperoxidase by binding reversibly to the enzyme. Our multi-substrate assay is selective for physiologically relevant inhibitors and has potential for identifying new classes of myeloperoxidase inhibitors.


Assuntos
Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Peroxidase/análise , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Peroxidase/antagonistas & inibidores , Peroxidase/metabolismo
15.
J Biol Chem ; 290(15): 9896-905, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25697357

RESUMO

Phagocytic neutrophils generate reactive oxygen species to kill microbes. Oxidant generation occurs within an intracellular phagosome, but diffusible species can react with the neutrophil and surrounding tissue. To investigate the extent of oxidative modification, we assessed the carbonylation of cytosolic proteins in phagocytic neutrophils. A 4-fold increase in protein carbonylation was measured within 15 min of initiating phagocytosis. Carbonylation was dependent on NADPH oxidase and myeloperoxidase activity and was inhibited by butylated hydroxytoluene and Trolox, indicating a role for myeloperoxidase-dependent lipid peroxidation. Proteomic analysis of target proteins revealed significant carbonylation of the S100A9 subunit of calprotectin, a truncated form of Hsp70, actin, and hemoglobin from contaminating erythrocytes. The addition of the reactive aldehyde 4-hydroxynonenal (HNE) caused carbonylation, and HNE-glutathione adducts were detected in the cytosol of phagocytic neutrophils. The post-translational modification of neutrophil proteins will influence the functioning and fate of these immune cells in the period following phagocytic activation, and provides a marker of neutrophil activation during infection and inflammation.


Assuntos
Peroxidação de Lipídeos , Neutrófilos/metabolismo , Peroxidase/metabolismo , Proteoma/metabolismo , Aldeídos/farmacologia , Hidroxitolueno Butilado/farmacologia , Calgranulina B/metabolismo , Cromanos/farmacologia , Citosol/metabolismo , Eletroforese em Gel Bidimensional , Humanos , Immunoblotting , Complexo Antígeno L1 Leucocitário/metabolismo , NADPH Oxidases/metabolismo , Oxirredução , Fagocitose , Carbonilação Proteica/efeitos dos fármacos , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo
16.
Am J Respir Cell Mol Biol ; 53(2): 193-205, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25490247

RESUMO

Thiocyanate (SCN) is used by the innate immune system, but less is known about its impact on inflammation and oxidative stress. Granulocytes oxidize SCN to evolve the bactericidal hypothiocyanous acid, which we previously demonstrated is metabolized by mammalian, but not bacterial, thioredoxin reductase (TrxR). There is also evidence that SCN is dysregulated in cystic fibrosis (CF), a disease marked by chronic infection and airway inflammation. To investigate antiinflammatory effects of SCN, we administered nebulized SCN or saline to ß epithelial sodium channel (ßENaC) mice, a phenotypic CF model. SCN significantly decreased airway neutrophil infiltrate and restored the redox ratio of glutathione in lung tissue and airway epithelial lining fluid to levels comparable to wild type. Furthermore, in Pseudomonas aeruginosa-infected ßENaC and wild-type mice, SCN decreased inflammation, proinflammatory cytokines, and bacterial load. SCN also decreased airway neutrophil chemokine keratinocyte chemoattractant (also known as C-X-C motif chemokine ligand 1) and glutathione sulfonamide, a biomarker of granulocyte oxidative activity, in uninfected ßENaC mice. Lung tissue TrxR activity and expression increased in inflamed lung tissue, providing in vivo evidence for the link between hypothiocyanous acid metabolism by TrxR and the promotion of selective biocide of pathogens. SCN treatment both suppressed inflammation and improved host defense, suggesting that nebulized SCN may have important therapeutic utility in diseases of both chronic airway inflammation and persistent bacterial infection, such as CF.


Assuntos
Antibacterianos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Fibrose Cística/tratamento farmacológico , Tiocianatos/administração & dosagem , Administração por Inalação , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Linhagem Celular , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Pulmão/enzimologia , Pulmão/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/enzimologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/enzimologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Tiocianatos/farmacologia , Tiorredoxina Dissulfeto Redutase/metabolismo
17.
J Biol Chem ; 289(32): 21937-49, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24928513

RESUMO

The physiological function of urate is poorly understood. It may act as a danger signal, an antioxidant, or a substrate for heme peroxidases. Whether it reacts sufficiently rapidly with lactoperoxidase (LPO) to act as a physiological substrate remains unknown. LPO is a mammalian peroxidase that plays a key role in the innate immune defense by oxidizing thiocyanate to the bactericidal and fungicidal agent hypothiocyanite. We now demonstrate that urate is a good substrate for bovine LPO. Urate was oxidized by LPO to produce the electrophilic intermediates dehydrourate and 5-hydroxyisourate, which decayed to allantoin. In the presence of superoxide, high yields of hydroperoxides were formed by LPO and urate. Using stopped-flow spectroscopy, we determined rate constants for the reaction of urate with compound I (k1 = 1.1 × 10(7) M(-1) s(-1)) and compound II (k2 = 8.5 × 10(3) M(-1) s(-1)). During urate oxidation, LPO was diverted from its peroxidase cycle because hydrogen peroxide reacted with compound II to give compound III. At physiologically relevant concentrations, urate competed effectively with thiocyanate, the main substrate of LPO for oxidation, and inhibited production of hypothiocyanite. Similarly, hypothiocyanite-dependent killing of Pseudomonas aeruginosa was inhibited by urate. Allantoin was present in human saliva and associated with the concentration of LPO. When hydrogen peroxide was added to saliva, oxidation of urate was dependent on its concentration and peroxidase activity. Our findings establish urate as a likely physiological substrate for LPO that will influence host defense and give rise to reactive electrophilic metabolites.


Assuntos
Lactoperoxidase/metabolismo , Tiocianatos/metabolismo , Ácido Úrico/metabolismo , Animais , Antibacterianos/metabolismo , Ligação Competitiva , Bovinos , Humanos , Imunidade Inata , Cinética , Lactoperoxidase/imunologia , Modelos Biológicos , Oxirredução , Pseudomonas aeruginosa/imunologia , Saliva/imunologia , Saliva/metabolismo , Especificidade por Substrato
18.
J Biol Chem ; 289(9): 5580-95, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24436331

RESUMO

Oxidants derived from myeloperoxidase (MPO) contribute to inflammatory diseases. In vivo MPO activity is commonly assessed by the accumulation of 3-chlorotyrosine (3-Cl-Tyr), although 3-Cl-Tyr is formed at low yield and is subject to metabolism. Here we show that MPO activity can be assessed using hydroethidine (HE), a probe commonly employed for the detection of superoxide. Using LC/MS/MS, (1)H NMR, and two-dimensional NOESY, we identified 2-chloroethidium (2-Cl-E(+)) as a specific product when HE was exposed to hypochlorous acid (HOCl), chloramines, MPO/H2O2/chloride, and activated human neutrophils. The rate constant for HOCl-mediated conversion of HE to 2-Cl-E(+) was estimated to be 1.5 × 10(5) M(-1)s(-1). To investigate the utility of 2-Cl-E(+) to assess MPO activity in vivo, HE was injected into wild-type and MPO-deficient (Mpo(-/-)) mice with established peritonitis or localized arterial inflammation, and tissue levels of 2-Cl-E(+) and 3-Cl-Tyr were then determined by LC/MS/MS. In wild-type mice, 2-Cl-E(+) and 3-Cl-Tyr were detected readily in the peritonitis model, whereas in the arterial inflammation model 2-Cl-E(+) was present at comparatively lower concentrations (17 versus 0.3 pmol/mg of protein), and 3-Cl-Tyr could not be detected. Similar to the situation with 3-Cl-Tyr, tissue levels of 2-Cl-E(+) were decreased substantially in Mpo(-/-) mice, indicative of the specificity of the assay. In the arterial inflammation model, 2-Cl-E(+) was absent from non-inflamed arteries and blood, suggesting that HE oxidation occurred locally in the inflamed artery. Our data suggest that the conversion of exogenous HE to 2-Cl-E(+) may be a useful selective and sensitive marker for MPO activity in addition to 3-Cl-Tyr.


Assuntos
Peróxido de Hidrogênio/química , Oxidantes/química , Peroxidase/química , Fenantridinas/química , Animais , Arterite/enzimologia , Arterite/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Peritonite/enzimologia , Peritonite/genética , Peroxidase/genética , Peroxidase/metabolismo
19.
Biochim Biophys Acta ; 1840(2): 781-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23872351

RESUMO

BACKGROUND: Chlorine bleach, or hypochlorous acid, is the most reactive two-electron oxidant produced in appreciable amounts in our bodies. Neutrophils are the main source of hypochlorous acid. These champions of the innate immune system use it to fight infection but also direct it against host tissue in inflammatory diseases. Neutrophils contain a rich supply of the enzyme myeloperoxidase. It uses hydrogen peroxide to convert chloride to hypochlorous acid. SCOPE OF REVIEW: We give a critical appraisal of the best methods to measure production of hypochlorous acid by purified peroxidases and isolated neutrophils. Robust ways of detecting it inside neutrophil phagosomes where bacteria are killed are also discussed. Special attention is focused on reaction-based fluorescent probes but their visual charm is tempered by stressing their current limitations. Finally, the strengths and weaknesses of biomarker assays that capture the footprints of chlorine in various pathologies are evaluated. MAJOR CONCLUSIONS: Detection of hypochlorous acid by purified peroxidases and isolated neutrophils is best achieved by measuring accumulation of taurine chloramine. Formation of hypochlorous acid inside neutrophil phagosomes can be tracked using mass spectrometric analysis of 3-chlorotyrosine and methionine sulfoxide in bacterial proteins, or detection of chlorinated fluorescein on ingestible particles. Reaction-based fluorescent probes can also be used to monitor hypochlorous acid during phagocytosis. Specific biomarkers of its formation during inflammation include 3-chlorotyrosine, chlorinated products of plasmalogens, and glutathione sulfonamide. GENERAL SIGNIFICANCE: These methods should bring new insights into how chlorine bleach is produced by peroxidases, reacts within phagosomes to kill bacteria, and contributes to inflammation. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.


Assuntos
Ácido Hipocloroso/análise , Inflamação/metabolismo , Neutrófilos/metabolismo , Animais , Humanos , Peroxidase/metabolismo
20.
Chem Res Toxicol ; 28(8): 1556-66, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26207674

RESUMO

Urate hydroperoxide is a strong oxidant generated by the combination of urate free radical and superoxide. The formation of urate hydroperoxide as an intermediate in urate oxidation is potentially responsible for the pro-oxidant effects of urate in inflammatory disorders, protein degradation, and food decomposition. To understand the molecular mechanisms that sustain the harmful effects of urate in inflammatory and oxidative stress related conditions, we report a detailed structural characterization and reactivity of urate hydroperoxide toward biomolecules. Urate hydroperoxide was synthesized by photo-oxidation and by a myeloperoxidase/hydrogen peroxide/superoxide system. Multiple reaction monitoring (MRM) and MS(3) ion fragmentation revealed that urate hydroperoxide from both sources has the same chemical structure. Urate hydroperoxide has a maximum absorption at 308 nm, ε308nm = 6.54 ± 0.38 × 10(3) M(-1) cm(-1). This peroxide decays spontaneously with a rate constant of k = 2.80 ± 0.18 × 10(-4) s(-1) and a half-life of 41 min at 22 °C. Urate hydroperoxide undergoes electrochemical reduction at potential values less negative than -0.5 V (versus Ag/AgCl). When incubated with taurine, histidine, tryptophan, lysine, methionine, cysteine, or glutathione, urate hydroperoxide reacted only with methionine, cysteine, and glutathione. The oxidation of these molecules occurred by a two-electron mechanism, generating the alcohol, hydroxyisourate. No adduct between cysteine or glutathione and urate hydroperoxide was detected. The second-order rate constant for the oxidation of glutathione by urate hydroperoxide was 13.7 ± 0.8 M(-1) s(-1). In conclusion, the oxidation of sulfur-containing biomolecules by urate hydroperoxide is likely to be a mechanism by which the pro-oxidant and damaging effects of urate are mediated in inflammatory and photo-oxidizing processes.


Assuntos
Peróxido de Hidrogênio/química , Luz , Peróxidos/química , Ácido Úrico/análogos & derivados , Ácido Úrico/química , Cromatografia Líquida , Glutationa/química , Cinética , Estrutura Molecular , Oxirredução , Estresse Oxidativo , Espectrometria de Massas por Ionização por Electrospray , Ácido Úrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA