Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(15): 6262-6267, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35862144

RESUMO

Semiconductor/superconductor hybrids exhibit a range of phenomena that can be exploited for the study of novel physics and the development of new technologies. Understanding the origin of the energy spectrum of such hybrids is therefore a crucial goal. Here, we study Josephson junctions defined by shadow epitaxy on InAsSb/Al nanowires. The devices exhibit gate-tunable supercurrents at low temperatures and multiple Andreev reflections (MARs) at finite voltage bias. Under microwave irradiation, photon-assisted tunneling (PAT) of MARs produces characteristic oscillating sidebands at quantized energies, which depend on MAR order, n, in agreement with a recently suggested modification of the classical Tien-Gordon equation. The scaling of the quantized energy spacings with microwave frequency provides independent confirmation of the effective charge, ne, transferred by the nth-order tunneling process. The measurements suggest PAT as a powerful method for assigning the origin of low-energy spectral features in hybrid Josephson devices.

2.
Phys Rev Lett ; 128(4): 046801, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148137

RESUMO

We investigate an electron transport blockade regime in which a spin triplet localized in the path of current is forbidden from entering a spin-singlet superconductor. To stabilize the triplet, a double quantum dot is created electrostatically near a superconducting Al lead in an InAs nanowire. The quantum dot closest to the normal lead exhibits Coulomb diamonds, and the dot closest to the superconducting lead exhibits Andreev bound states and an induced gap. The experimental observations compare favorably to a theoretical model of Andreev blockade, named so because the triplet double dot configuration suppresses Andreev reflections. Observed leakage currents can be accounted for by finite temperature. We observe the predicted quadruple level degeneracy points of high current and a periodic conductance pattern controlled by the occupation of the normal dot. Even-odd transport asymmetry is lifted with increased temperature and magnetic field. This blockade phenomenon can be used to study spin structure of superconductors. It may also find utility in quantum computing devices that use Andreev or Majorana states.

3.
Nano Lett ; 20(1): 456-462, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31769993

RESUMO

Nanowires can serve as flexible substrates for hybrid epitaxial growth on selected facets, allowing for the design of heterostructures with complex material combinations and geometries. In this work we report on hybrid epitaxy of freestanding vapor-liquid-solid grown and in-plane selective area grown semiconductor-ferromagnetic insulator-superconductor (InAs/EuS/Al) nanowire heterostructures. We study the crystal growth and complex epitaxial matching of wurtzite and zinc-blende InAs/rock-salt EuS interfaces as well as rock-salt EuS/face-centered cubic Al interfaces. Because of the magnetic anisotropy originating from the nanowire shape, the magnetic structure of the EuS phase is easily tuned into single magnetic domains. This effect efficiently ejects the stray field lines along the nanowires. With tunnel spectroscopy measurements of the density of states, we show that the material has a hard induced superconducting gap, and magnetic hysteretic evolution which indicates that the magnetic exchange fields are not negligible. These hybrid nanowires fulfill key material requirements for serving as a platform for spin-based quantum applications, such as scalable topological quantum computing.

4.
J Am Chem Soc ; 140(31): 9797-9800, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30049205

RESUMO

In floating catalyst chemical vapor deposition (FC-CVD), tuning chirality distribution and obtaining narrow chirality distribution of single-walled carbon nanotubes (SWCNTs) is challenging. Herein, by introducing various amount of CO2 in FC-CVD using CO as a carbon source, we have succeeded in directly synthesizing SWCNT films with tunable chirality distribution as well as tunable colors. In particular, with 0.25 and 0.37 volume percent of CO2, the SWCNT films display green and brown colors, respectively. We ascribed various colors to suitable diameter and narrow chirality distribution of SWCNTs. Additionally, by optimizing reactor temperature, we achieved much narrower ( n, m) distribution clustered around (11,9) with extremely narrow diameter range (>98% between 1.2 and 1.5 nm). We propose that CO2 may affect CO disproportionation and nucleation modes of SWCNTs, resulting in SWCNTs' various diameter ranges. Our work could provide a new route for high-yield and direct synthesis of SWCNTs with narrow chirality distribution and offer potential applications in electronics, such as touch sensors or transistors.

5.
ACS Nano ; 17(12): 11794-11804, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37317984

RESUMO

Hybrid semiconductor-superconductor nanowires constitute a pervasive platform for studying gate-tunable superconductivity and the emergence of topological behavior. Their low dimensionality and crystal structure flexibility facilitate unique heterostructure growth and efficient material optimization, crucial prerequisites for accurately constructing complex multicomponent quantum materials. Here, we present an extensive study of Sn growth on InSb, InAsSb, and InAs nanowires and demonstrate how the crystal structure of the nanowires drives the formation of either semimetallic α-Sn or superconducting ß-Sn. For InAs nanowires, we observe phase-pure superconducting ß-Sn shells. However, for InSb and InAsSb nanowires, an initial epitaxial α-Sn phase evolves into a polycrystalline shell of coexisting α and ß phases, where the ß/α volume ratio increases with Sn shell thickness. Whether these nanowires exhibit superconductivity or not critically relies on the ß-Sn content. Therefore, this work provides key insights into Sn phases on a variety of semiconductors with consequences for the yield of superconducting hybrids suitable for generating topological systems.

6.
Adv Mater ; 34(11): e2108878, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35050545

RESUMO

Understanding the spatial distribution of charge carriers in III-V nanowires proximity coupled to superconductors is important for the design and interpretation of experiments based on hybrid quantum devices. In this letter, the gate-dependent surface accumulation layer of half-shell InAsSb/Al nanowires is studied by means of Andreev interference in a parallel magnetic field. Both uniform hybrid nanowires and devices featuring a short Josephson junction fabricated by shadow lithography, exhibit periodic modulation of the switching current. The period corresponds to a flux quantum through the nanowire diameter and is consistent with Andreev bound states occupying a cylindrical surface accumulation layer. The spatial distribution is tunable by a gate potential as expected from electrostatic models.

7.
Adv Mater ; 33(29): e2100078, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34075631

RESUMO

By studying the time-dependent axial and radial growth of InSb nanowires (NWs), the conditions for the synthesis of single-crystalline InSb nanocrosses (NCs) by molecular beam epitaxy are mapped. Low-temperature electrical measurements of InSb NC devices with local gate control on individual terminals exhibit quantized conductance and are used to probe the spatial distribution of the conducting channels. Tuning to a situation where the NC junction is connected by few-channel quantum point contacts in the connecting NW terminals, it is shown that transport through the junction is ballistic except close to pinch-off. Combined with a new concept for shadow-epitaxy of patterned superconductors on NCs, the structures reported here show promise for the realization of non-trivial topological states in multi-terminal Josephson junctions.

8.
ACS Nano ; 14(11): 14605-14615, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-32396328

RESUMO

Gate-tunable junctions are key elements in quantum devices based on hybrid semiconductor-superconductor materials. They serve multiple purposes ranging from tunnel spectroscopy probes to voltage-controlled qubit operations in gatemon and topological qubits. Common to all is that junction transparency plays a critical role. In this study, we grow single-crystalline InAs, InSb, and InAs1-xSbx semiconductor nanowires with epitaxial Al, Sn, and Pb superconductors and in situ shadowed junctions in a single-step molecular beam epitaxy process. We investigate correlations between fabrication parameters, junction morphologies, and electronic transport properties of the junctions and show that the examined in situ shadowed junctions are of significantly higher quality than the etched junctions. By varying the edge sharpness of the shadow junctions, we show that the sharpest edges yield the highest junction transparency for all three examined semiconductors. Further, critical supercurrent measurements reveal an extraordinarily high ICRN, close to the KO-2 limit. This study demonstrates a promising engineering path toward reliable gate-tunable superconducting qubits.

9.
ACS Appl Mater Interfaces ; 12(7): 8780-8787, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31877013

RESUMO

Hybrid semiconductor-ferromagnetic insulator heterostructures are interesting due to their tunable electronic transport, self-sustained stray field, and local proximitized magnetic exchange. In this work, we present lattice-matched hybrid epitaxy of semiconductor-ferromagnetic insulator InAs/EuS heterostructures and analyze the atomic-scale structure and their electronic and magnetic characteristics. The Fermi level at the InAs/EuS interface is found to be close to the InAs conduction band and in the band gap of EuS, thus preserving the semiconducting properties. Both neutron and X-ray reflectivity measurements show that the overall ferromagnetic component is mainly localized in the EuS thin film with a suppression of the Eu moment in the EuS layer nearest the InAs and magnetic moments outside the detection limits on the pure InAs side. This work presents a step toward realizing defect-free semiconductor-ferromagnetic insulator epitaxial hybrids for spin-lifted quantum and spintronic applications without external magnetic fields.

10.
ACS Nano ; 13(10): 11522-11529, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31497949

RESUMO

Transparent and conductive films (TCFs) are of great technological importance. Their high transmittance, electrical conductivity, and mechanical strength make single-walled carbon nanotubes (SWCNTs) a good candidate for the raw material for TCFs. Despite the ballistic transport in individual SWCNTs, electrical conductivity of SWCNT networks is limited by low efficiency of charge tunneling between the tube elements. Here, we demonstrate that the nanotube network sheet resistance at high optical transmittance is decreased by more than 50% when fabricated on graphene. This is a comparable improvement as that obtained through gold chloride (AuCl3) doping. However, while Raman spectroscopy reveals substantial changes in spectral features of AuCl3 doped nanotubes, this does not occur with graphene. Instead, temperature-dependent transport measurements indicate that a graphene substrate reduces the tunneling barrier heights, while its parallel conductivity contribution is almost negligible. Finally, we show that combining the graphene substrate and AuCl3 doping, brings the SWCNT thin film sheet resistance down to 36 Ω/□.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA