Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 27(18): 4030-4040, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31378596

RESUMO

A series of benzamide derivatives 1-12 with various functional groups (-H, -Br, -F, -OCH3, -OC2H5, and -NO2) was synthesized using an economic, and facile Microwave-Assisted Organic Synthesis, and evaluated for acetylcholinesterase (ACHE) and butyrylcholinesterase (BCHE) activity in vitro. Structure-activity relationship showed that the substitution of -Br group influenced the inhibitory activity against BCHE enzyme. Synthesized compounds were found to be selective inhibitors of BCHE. In addition, all compounds 1-12 were found to be non-cytotoxic, as compared to the standard cycloheximide (IC50 = 0.8 ±â€¯0.2 µM). Among them, compound 3 revealed the most potent BCHE inhibitory activity (IC50 = 0.8 ±â€¯0.6 µM) when compared with the standard galantamine hydrobromide (IC50 = 40.83 ±â€¯0.37 µM). Enzyme kinetic studies indicated that compounds 1, 3-4, and 7-8 showed a mixed mode of inhibition against BCHE, while compounds 2, 5-6 and 9 exhibited an uncompetitive pattern of inhibition. Molecular docking studies further highlighted the interaction of these inhibitors with catalytically important amino acid residues, such as Glu197, Hip438, Phe329, and many others.


Assuntos
Benzamidas/uso terapêutico , Inibidores da Colinesterase/uso terapêutico , Simulação de Acoplamento Molecular/métodos , Benzamidas/farmacologia , Inibidores da Colinesterase/farmacologia , Humanos , Cinética , Estrutura Molecular , Relação Estrutura-Atividade
2.
J Environ Sci (China) ; 31: 104-23, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25968265

RESUMO

The direct determination of toxic metal ions, in environmental samples, is difficult because of the latter's presence in trace concentration in association with complex matrices, thereby leading to insufficient sensitivity and selectivity of the methods used. The simultaneous removal of the matrix and preconcentration of the metal ions, through solid phase extraction, serves as the promising solution. The mechanism involved in solid phase extraction (SPE) depends on the nature of the sorbent and analyte. Thus, SPE is carried out by means of adsorption, ion exchange, chelation, ion pair formation, and so forth. As polymeric supports, the commercially available Amberlite resins have been found very promising for designing chelating matrices due to its good physical and chemical properties such as porosity, high surface area, durability and purity. This review presents an overview of the various works done on the modification of Amberlite XAD resins with the objective of making it an efficient sorbent. The methods of modifications which are generally based on simple impregnation, sorption as chelates and chemical bonding have been discussed. The reported results, including the preconcentration limit, the detection limit, sorption capacity, preconcentration factors etc., have been reproduced.


Assuntos
Metais/química , Poliestirenos/química , Polivinil/química , Poluentes Químicos da Água/química , Adsorção , Polímeros/química
3.
Polymers (Basel) ; 14(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35054645

RESUMO

Inspired by nature, significant research efforts have been made to discover the diverse range of biomaterials for various biomedical applications such as drug development, disease diagnosis, biomedical testing, therapy, etc. Polymers as bioinspired materials with extreme wettable properties, such as superhydrophilic and superhydrophobic surfaces, have received considerable interest in the past due to their multiple applications in anti-fogging, anti-icing, self-cleaning, oil-water separation, biosensing, and effective transportation of water. Apart from the numerous technological applications for extreme wetting and self-cleaning products, recently, super-wettable surfaces based on polymeric materials have also emerged as excellent candidates in studying biological processes. In this review, we systematically illustrate the designing and processing of artificial, super-wettable surfaces by using different polymeric materials for a variety of biomedical applications including tissue engineering, drug/gene delivery, molecular recognition, and diagnosis. Special attention has been paid to applications concerning the identification, control, and analysis of exceedingly small molecular amounts and applications permitting high cell and biomaterial cell screening. Current outlook and future prospects are also provided.

4.
Front Chem ; 7: 739, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799232

RESUMO

Nanotechnology is an innovative area of science that includes the design, characterization, production, and application of materials, devices and systems by controlling shape and size at the nanometer scale (1-100 nm). Nanotechnology incorporation in cosmetic formulation is considered as the hottest and emerging technology available. Cosmetic manufacturers use nanoscale size ingredients to provide better UV protection, deeper skin penetration, long-lasting effects, increased color, finish quality, and many more. Micellar nanoparticles is one of the latest field applied in cosmetic products that becoming trending and widely commercialized in local and international markets. The ability of nanoemulsion system to form small micellar nanoparticles size with high surface area allowing to effectiveness of bioactive component transport onto the skin. Oil in water nanoemulsion is playing a major role as effective formulation in cosmetics such as make-up remover, facial cleanser, anti-aging lotion, sun-screens, and other water-based cosmetic formulations. The objective of this review is to critically discuss the properties, advantageous, and mechanism of micellar nanoparticles formation in nanoemulsion system. Therefore, present article introduce and discuss the specific benefits of nanoemulsion system in forming micellar nanoparticles for cosmetic formulation which become major factors for further development of micellar-based cosmetic segments.

5.
Sci Rep ; 9(1): 13678, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31548590

RESUMO

Eucalyptus globulus is an aromatic medicinal plant which known for its 1,8-cineole main pharmacological constituent exhibits as natural analgesic agent. Eucalyptus globulus-loaded micellar nanoparticle was developed via spontaneous emulsification technique and further evaluation for its analgesic efficacy study, in vivo analgesic activity assay in rats. The nanoemulsion system containing Eucalyptus-micelles was optimized at different surfactant types (Tween 40, 60 and 80) and concentrations (3.0, 6.0, 9.0, 12.0, 15.0, and 18.0 wt. %). These formulations were characterized by thermodynamically stability, viscosity, micelles particle size, pH, and morphology structure. The spontaneous emulsification technique offered a greener micelles formation in nanoemulsion system by slowly titrated of organic phase, containing Eucalyptus globulus (active compound), grape seed oil (carrier oil) and hydrophilic surfactant into aqueous phase, and continuously stirred for 30 min to form a homogeneity solution. The characterizations evaluation revealed an optimized formulation with Tween 40 surfactant type at 9.0 wt. % of surfactant concentration promoted the most thermodynamic stability, smaller micelles particle size (d = 17.13 ± 0.035 nm) formed with spherical shape morphological structure, and suitable in viscosity (≈2.3 cP) and pH value (6.57) for transdermal purpose. The in vivo analgesic activity assay of optimized emulsion showed that the transdermal administration of micellar nanoparticle of Eucalyptus globulus on fore and hind limb of rats, possessed the central and peripheral analgesic effects by prolonged the rats pain responses towards the heat stimulus after being put on top of hot plate (55 °C), with longest time responses, 40.75 s at 60 min after treatment administration. Thus, this study demonstrated that micellar nanoparticle of Eucalyptus globulus formed in nanoemulsion system could be promising as an efficient transdermal nanocarrier for the analgesic therapy alternative.


Assuntos
Emulsões/farmacologia , Óleo de Eucalipto/farmacologia , Limiar da Dor/efeitos dos fármacos , Dor/tratamento farmacológico , Animais , Emulsões/química , Emulsões/uso terapêutico , Óleo de Eucalipto/química , Óleo de Eucalipto/uso terapêutico , Temperatura Alta , Masculino , Micelas , Nanotecnologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA