Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499361

RESUMO

Despite major advances, our understanding of the neurobiology of life course socioeconomic conditions is still scarce. This study aimed to provide insight into the pathways linking socioeconomic exposures-household income, last known occupational position, and life course socioeconomic trajectories-with brain microstructure and cognitive performance in middle to late adulthood. We assessed socioeconomic conditions alongside quantitative relaxometry and diffusion-weighted magnetic resonance imaging indicators of brain tissue microstructure and cognitive performance in a sample of community-dwelling men and women (N = 751, aged 50-91 years). We adjusted the applied regression analyses and structural equation models for the linear and nonlinear effects of age, sex, education, cardiovascular risk factors, and the presence of depression, anxiety, and substance use disorders. Individuals from lower-income households showed signs of advanced brain white matter (WM) aging with greater mean diffusivity (MD), lower neurite density, lower myelination, and lower iron content. The association between household income and MD was mediated by neurite density (B = 0.084, p = 0.003) and myelination (B = 0.019, p = 0.009); MD partially mediated the association between household income and cognitive performance (B = 0.017, p < 0.05). Household income moderated the relation between WM microstructure and cognitive performance, such that greater MD, lower myelination, or lower neurite density was only associated with poorer cognitive performance among individuals from lower-income households. Individuals from higher-income households showed preserved cognitive performance even with greater MD, lower myelination, or lower neurite density. These findings provide novel mechanistic insights into the associations between socioeconomic conditions, brain anatomy, and cognitive performance in middle to late adulthood.


Assuntos
Encéfalo , Cognição , Substância Branca , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Cognição/fisiologia , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Fatores Socioeconômicos , Envelhecimento/fisiologia , Envelhecimento/psicologia , Imagem de Difusão por Ressonância Magnética , Renda
2.
Hum Brain Mapp ; 43(6): 1973-1983, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35112434

RESUMO

Motion during the acquisition of magnetic resonance imaging (MRI) data degrades image quality, hindering our capacity to characterise disease in patient populations. Quality control procedures allow the exclusion of the most affected images from analysis. However, the criterion for exclusion is difficult to determine objectively and exclusion can lead to a suboptimal compromise between image quality and sample size. We provide an alternative, data-driven solution that assigns weights to each image, computed from an index of image quality using restricted maximum likelihood. We illustrate this method through the analysis of quantitative MRI data. The proposed method restores the validity of statistical tests, and performs near optimally in all brain regions, despite local effects of head motion. This method is amenable to the analysis of a broad type of MRI data and can accommodate any measure of image quality.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Movimento (Física) , Controle de Qualidade , Tamanho da Amostra
3.
J Sleep Res ; 31(6): e13698, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35830960

RESUMO

Obstructive sleep apnea syndrome (OSA) may be a risk factor for Alzheimer's disease. One of the hallmarks of Alzheimer's disease is disturbed iron homeostasis leading to abnormal iron deposition in brain tissue. To date, there is no empirical evidence to support the hypothesis of altered brain iron homeostasis in patients with obstructive sleep apnea as well. Data were analysed from 773 participants in the HypnoLaus study (mean age 55.9 ± 10.3 years) who underwent polysomnography and brain MRI. Cross-sectional associations were tested between OSA parameters and the MRI effective transverse relaxation rate (R2*) - indicative of iron content - in 68 grey matter regions, after adjustment for confounders. The group with severe OSA (apnea-hypopnea index ≥30/h) had higher iron levels in the left superior frontal gyrus (F3,760  = 4.79, p = 0.003), left orbital gyri (F3,760  = 5.13, p = 0.002), right and left middle temporal gyrus (F3,760  = 4.41, p = 0.004 and F3,760  = 13.08, p < 0.001, respectively), left angular gyrus (F3,760  = 6.29, p = 0.001), left supramarginal gyrus (F3,760  = 4.98, p = 0.003), and right cuneus (F3,760  = 7.09, p < 0.001). The parameters of nocturnal hypoxaemia were all consistently associated with higher iron levels. Measures of sleep fragmentation had less consistent associations with iron content. This study provides the first evidence of increased brain iron levels in obstructive sleep apnea. The observed iron changes could reflect underlying neuropathological processes that appear to be driven primarily by hypoxaemic mechanisms.


Assuntos
Doença de Alzheimer , Apneia Obstrutiva do Sono , Humanos , Pessoa de Meia-Idade , Idoso , Estudos Transversais , Apneia Obstrutiva do Sono/complicações , Imageamento por Ressonância Magnética , Encéfalo , Ferro
4.
Neuroimage ; 229: 117735, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33454401

RESUMO

AIM: There is ongoing debate about the role of cortical and subcortical brain areas in force modulation. In a whole-brain approach, we sought to investigate the anatomical basis of grip force whilst acknowledging interindividual differences in connectivity patterns. We tested if brain lesion mapping in patients with unilateral motor deficits can inform whole-brain structural connectivity analysis in healthy controls to uncover the networks underlying grip force. METHODS: Using magnetic resonance imaging (MRI) and whole-brain voxel-based morphometry in chronic stroke patients (n=55) and healthy controls (n=67), we identified the brain regions in both grey and white matter significantly associated with grip force strength. The resulting statistical parametric maps (SPMs) provided seed areas for whole-brain structural covariance analysis in a large-scale community dwelling cohort (n=977) that included beyond volume estimates, parameter maps sensitive to myelin, iron and tissue water content. RESULTS: The SPMs showed symmetrical bilateral clusters of correlation between upper limb motor performance, basal ganglia, posterior insula and cortico-spinal tract. The covariance analysis with the seed areas derived from the SPMs demonstrated a widespread anatomical pattern of brain volume and tissue properties, including both cortical, subcortical nodes of motor networks and sensorimotor areas projections. CONCLUSION: We interpret our covariance findings as a biological signature of brain networks implicated in grip force. The data-driven definition of seed areas obtained from chronic stroke patients showed overlapping structural covariance patterns within cortico-subcortical motor networks across different tissue property estimates. This cumulative evidence lends face validity of our findings and their biological plausibility.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Força da Mão/fisiologia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia
5.
Neuroimage ; 227: 117613, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33307223

RESUMO

A growing body of empirical evidence supports the notion of diverse neurobiological processes underlying learning-induced plasticity changes in the human brain. There are still open questions about how brain plasticity depends on cognitive task complexity, how it supports interactions between brain systems and with what temporal and spatial trajectory. We investigated brain and behavioural changes in sighted adults during 8-months training of tactile Braille reading whilst monitoring brain structure and function at 5 different time points. We adopted a novel multivariate approach that includes behavioural data and specific MRI protocols sensitive to tissue properties to assess local functional and structural and myelin changes over time. Our results show that while the reading network, located in the ventral occipitotemporal cortex, rapidly adapts to tactile input, sensory areas show changes in grey matter volume and intra-cortical myelin at different times. This approach has allowed us to examine and describe neuroplastic mechanisms underlying complex cognitive systems and their (sensory) inputs and (motor) outputs differentially, at a mesoscopic level.


Assuntos
Encéfalo/diagnóstico por imagem , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Leitura , Auxiliares Sensoriais , Percepção do Tato/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética
6.
Ann Neurol ; 87(6): 921-930, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32220084

RESUMO

OBJECTIVE: There is much controversy about the neurobiological mechanisms underlying the effects of sleep-disordered breathing on the brain. The aim of this study was to investigate the association between markers of sleep-related hypoxemia and brain anatomy. METHODS: We used data from a large-scale cohort from the general population (n = 775, 50.6% males, age range = 45-86 years, mean age = 60.3 ± 9.9) that underwent full polysomnography and brain magnetic resonance imaging to correlate respiratory variables with regional brain volume estimates. RESULTS: After adjusting for age, gender, and cardiovascular risk factors, only mean oxygen saturation during sleep was associated with bilateral volume of hippocampus (right: p = 0.001; left: p < 0.001), thalamus (right: p < 0.001; left: p < 0.001), putamen (right: p = 0.001; left: p = 0.001), and angular gyrus (right: p = 0.011; left: p = 0.001). We observed the same relationship in left hemispheric amygdala (p = 0.010), caudate (p = 0.008), inferior frontal gyrus (p = 0.004), and supramarginal gyrus (p = 0.003). The other respiratory variables-lowest oxygen saturation, percentage of sleep time with oxygen saturation < 90%, apnea-hypopnea index, and oxygen desaturation index-did not show any significant association with brain volumes. INTERPRETATION: Lower mean oxygen saturation during sleep was associated with atrophy of cortical and subcortical brain areas known for high sensitivity to oxygen supply. Their vulnerability to hypoxemia may contribute to behavioral phenotype and cognitive decline in patients with sleep-disordered breathing. ANN NEUROL 2020;87:921-930.


Assuntos
Encéfalo/patologia , Oxigênio/sangue , Sono , Adulto , Idoso , Idoso de 80 Anos ou mais , Atrofia , Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Estudos de Coortes , Feminino , Humanos , Hipóxia/sangue , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Polissonografia , Respiração , Síndromes da Apneia do Sono/complicações , Transtornos do Sono-Vigília/sangue
7.
J Med Syst ; 45(12): 105, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34729675

RESUMO

Developers proposing new machine learning for health (ML4H) tools often pledge to match or even surpass the performance of existing tools, yet the reality is usually more complicated. Reliable deployment of ML4H to the real world is challenging as examples from diabetic retinopathy or Covid-19 screening show. We envision an integrated framework of algorithm auditing and quality control that provides a path towards the effective and reliable application of ML systems in healthcare. In this editorial, we give a summary of ongoing work towards that vision and announce a call for participation to the special issue  Machine Learning for Health: Algorithm Auditing & Quality Control in this journal to advance the practice of ML4H auditing.


Assuntos
Algoritmos , Aprendizado de Máquina , Controle de Qualidade , Humanos
8.
Neuroimage ; 194: 191-210, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30677501

RESUMO

Neuroscience and clinical researchers are increasingly interested in quantitative magnetic resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-to-use tool available on GitHub, for qMRI data handling and processing, presented together with a tutorial and example dataset. This toolbox allows the estimation of high-quality multi-parameter qMRI maps (longitudinal and effective transverse relaxation rates R1 and R2⋆, proton density PD and magnetisation transfer MT saturation) that can be used for quantitative parameter analysis and accurate delineation of subcortical brain structures. The qMRI maps generated by the toolbox are key input parameters for biophysical models designed to estimate tissue microstructure properties such as the MR g-ratio and to derive standard and novel MRI biomarkers. Thus, the current version of the toolbox is a first step towards in vivo histology using MRI (hMRI) and is being extended further in this direction. Embedded in the Statistical Parametric Mapping (SPM) framework, it benefits from the extensive range of established SPM tools for high-accuracy spatial registration and statistical inferences and can be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps. From a user's perspective, the hMRI-toolbox is an efficient, robust and simple framework for investigating qMRI data in neuroscience and clinical research.


Assuntos
Mapeamento Encefálico/métodos , Conjuntos de Dados como Assunto , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neurociências/métodos , Humanos
9.
Curr Opin Neurol ; 32(4): 557-563, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31169559

RESUMO

PURPOSE OF REVIEW: The goal of our nation-wide initiative is to provide clinicians intuitive and robust tools for accurate diagnosis, therapy monitoring and prognosis of cognitive decline that is based on large-scale multidomain data. RECENT FINDINGS: We describe a federation framework that allows for statistical analysis of aggregated brain imaging and clinical phenotyping data across memory clinics in Switzerland. The adaptation and deployment of readily available data capturing and federation modules is paralleled by developments in ontology, quality and regulatory control of brain imaging data. Our initiative incentivizes data sharing through the common resource in a way that provides individual researcher with access to large-scale data that surpasses the data acquisition capacity of a single centre. Clinicians benefit from fine-grained epidemiological characterization of own data compared with the rest additional to intuitive tools allowing for computer-based diagnosis of dementia. Finally, our concept aims at closing the loop between group-level results based on aggregate data and individual diagnosis by providing disease models, that is, classifiers for neurocognitive disorders that will enable the computer-based diagnosis of individual patients. SUMMARY: The obtained results will inform recommendations on best clinical practice in all relevant fields focusing on standardization and interoperability of acquired data, privacy protection framework and ethical consideration in the context of evolutive pathology.


Assuntos
Encéfalo/diagnóstico por imagem , Demência/diagnóstico por imagem , Disseminação de Informação , Memória , Neuroimagem , Bases de Dados Factuais , Humanos , Imageamento por Ressonância Magnética , Fenótipo , Suíça , Universidades
10.
Hum Brain Mapp ; 40(7): 2252-2268, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30673158

RESUMO

The human brain undergoes dramatic structural change over the life span. In a large imaging cohort of 801 individuals aged 7-84 years, we applied quantitative relaxometry and diffusion microstructure imaging in combination with diffusion tractography to investigate tissue property dynamics across the human life span. Significant nonlinear aging effects were consistently observed across tracts and tissue measures. The age at which white matter (WM) fascicles attain peak maturation varies substantially across tissue measurements and tracts. These observations of heterochronicity and spatial heterogeneity of tract maturation highlight the importance of using multiple tissue measurements to investigate each region of the WM. Our data further provide additional quantitative evidence in support of the last-in-first-out retrogenesis hypothesis of aging, demonstrating a strong correlational relationship between peak maturational timing and the extent of quadratic measurement differences across the life span for the most myelin sensitive measures. These findings present an important baseline from which to assess divergence from normative aging trends in developmental and degenerative disorders, and to further investigate the mechanisms connecting WM microstructure to cognition.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imagem de Tensor de Difusão/tendências , Longevidade/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
Hum Brain Mapp ; 40(15): 4397-4416, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31291039

RESUMO

The dopaminergic system has a unique gating function in the initiation and execution of movements. When the interhemispheric imbalance of dopamine inherent to the healthy brain is disrupted, as in Parkinson's disease (PD), compensatory mechanisms act to stave off behavioral changes. It has been proposed that two such compensatory mechanisms may be (a) a decrease in motor lateralization, observed in drug-naïve PD patients and (b) reduced inhibition - increased facilitation. Seeking to investigate the differential effect of dopamine depletion and subsequent substitution on compensatory mechanisms in non-drug-naïve PD, we studied 10 PD patients and 16 healthy controls, with patients undergoing two test sessions - "ON" and "OFF" medication. Using a simple visually-cued motor response task and fMRI, we investigated cortical motor activation - in terms of laterality, contra- and ipsilateral percent BOLD signal change and effective connectivity in the parametric empirical Bayes framework. We found that decreased motor lateralization persists in non-drug-naïve PD and is concurrent with decreased contralateral activation in the cortical motor network. Normal lateralization is not reinstated by dopamine substitution. In terms of effective connectivity, disease-related changes primarily affect ipsilaterally-lateralized homotopic cortical motor connections, while medication-related changes affect contralaterally-lateralized homotopic connections. Our findings suggest that, in non-drug-naïve PD, decreased lateralization is no longer an adaptive cortical mechanism, but rather the result of maladaptive changes, related to disease progression and long-term dopamine replacement. These findings highlight the need for the development of noninvasive therapies, which would promote the adaptive mechanisms of the PD brain.


Assuntos
Adaptação Fisiológica/fisiologia , Dopamina/fisiologia , Atividade Motora/fisiologia , Rede Nervosa/fisiopatologia , Doença de Parkinson/fisiopatologia , Adaptação Fisiológica/efeitos dos fármacos , Idoso , Teorema de Bayes , Estudos de Casos e Controles , Conectoma , Dominância Cerebral/fisiologia , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/uso terapêutico , Feminino , Pé/fisiopatologia , Mãos/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Doença de Parkinson/tratamento farmacológico , Avaliação de Sintomas
12.
Hum Brain Mapp ; 39(4): 1532-1554, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29271053

RESUMO

Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, ). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these "networks of myelin covariance" (Myelin-Nets). The Myelin-Nets were built from quantitative Magnetization Transfer data-an in-vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin-Nets. We therefore selected two age groups: Young-Age (20-31 years old) and Old-Age (60-71 years old) and a pool of participants from 48 to 87 years old for a Myelin-Nets aging trajectory study. We found that the topological organization of the Myelin-Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin-Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging.


Assuntos
Envelhecimento , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Bainha de Mielina , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Vias Neurais/diagnóstico por imagem , Adulto Jovem
13.
Proc Natl Acad Sci U S A ; 111(3): 1156-61, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24379394

RESUMO

There remains much scientific, clinical, and ethical controversy concerning the use of electroconvulsive therapy (ECT) for psychiatric disorders stemming from a lack of information and knowledge about how such treatment might work, given its nonspecific and spatially unfocused nature. The mode of action of ECT has even been ascribed to a "barbaric" form of placebo effect. Here we show differential, highly specific, spatially distributed effects of ECT on regional brain structure in two populations: patients with unipolar or bipolar disorder. Unipolar and bipolar disorders respond differentially to ECT and the associated local brain-volume changes, which occur in areas previously associated with these diseases, correlate with symptom severity and the therapeutic effect. Our unique evidence shows that electrophysical therapeutic effects, although applied generally, take on regional significance through interactions with brain pathophysiology.


Assuntos
Eletroconvulsoterapia/métodos , Transtornos do Humor/fisiopatologia , Transtornos do Humor/terapia , Plasticidade Neuronal , Adulto , Transtorno Bipolar/terapia , Mapeamento Encefálico , Estimulação Encefálica Profunda/métodos , Depressão/terapia , Eletrofisiologia , Reações Falso-Positivas , Feminino , Hipocampo/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
14.
Hum Brain Mapp ; 37(5): 1801-15, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26876452

RESUMO

The high gray-white matter contrast and spatial resolution provided by T1-weighted magnetic resonance imaging (MRI) has made it a widely used imaging protocol for computational anatomy studies of the brain. While the image intensity in T1-weighted images is predominantly driven by T1, other MRI parameters affect the image contrast, and hence brain morphological measures derived from the data. Because MRI parameters are correlates of different histological properties of brain tissue, this mixed contribution hampers the neurobiological interpretation of morphometry findings, an issue which remains largely ignored in the community. We acquired quantitative maps of the MRI parameters that determine signal intensities in T1-weighted images (R1 (=1/T1), R2 *, and PD) in a large cohort of healthy subjects (n = 120, aged 18-87 years). Synthetic T1-weighted images were calculated from these quantitative maps and used to extract morphometry features-gray matter volume and cortical thickness. We observed significant variations in morphometry measures obtained from synthetic images derived from different subsets of MRI parameters. We also detected a modulation of these variations by age. Our findings highlight the impact of microstructural properties of brain tissue-myelination, iron, and water content-on automated measures of brain morphology and show that microstructural tissue changes might lead to the detection of spurious morphological changes in computational anatomy studies. They motivate a review of previous morphological results obtained from standard anatomical MRI images and highlight the value of quantitative MRI data for the inference of microscopic tissue changes in the healthy and diseased brain. Hum Brain Mapp 37:1801-1815, 2016. © 2016 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Encéfalo/anatomia & histologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Curr Opin Neurol ; 28(4): 351-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26132531

RESUMO

PURPOSE OF REVIEW: Only 5% of the Alzheimer's cases are explained by genetic mutations, whereas the remaining 95% are sporadic. The pathophysiological mechanisms underlying sporadic Alzheimer's disease are not well understood, suggesting a complex multifactorial cause. This review summarizes the recent findings on research aiming to show how biomarkers can be used for revealing the underlying mechanisms of preclinical stage Alzheimer's disease and help in their diagnosis. RECENT FINDINGS: The undisputed successful publicly accessible repositories provide longitudinal brain images, clinical, genetic and proteomic information of Alzheimer's disease. By combining with increasingly sophisticated data analysis methods, it is a great opportunity for searching new biomarkers. Innovative studies validated theoretical models of disease progression demonstrating the sequential ordering of well-established biomarkers. Novel observations shed light on the interaction between biomarkers to confirm that disease progression is related to multiple pathological factors. A typical example is the tau-associated neuronal toxicity that can be additionally potentiated by amyloid ß peptides. To increase further the complexity, studies report specific impact of common genetic variants that can be traced from childhood through middle age up to the symptomatic onset of Alzheimer's disease. SUMMARY: The discovery of efficient therapies to prevent the disease or modify the progression of disease requires a more thorough understanding of the underlying biological processes. Neuroimaging, genetic and proteomic biomarkers for Alzheimer's disease are critically discussed and proposed to be included in clinical descriptions and diagnostic guidelines.


Assuntos
Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Neuroimagem/métodos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Humanos
16.
Hum Brain Mapp ; 35(5): 1865-74, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23723177

RESUMO

Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Mapeamento Encefálico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Hum Brain Mapp ; 35(10): 5083-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24777915

RESUMO

Despite advances in understanding basic organizational principles of the human basal ganglia, accurate in vivo assessment of their anatomical properties is essential to improve early diagnosis in disorders with corticosubcortical pathology and optimize target planning in deep brain stimulation. Main goal of this study was the detailed topological characterization of limbic, associative, and motor subdivisions of the subthalamic nucleus (STN) in relation to corresponding corticosubcortical circuits. To this aim, we used magnetic resonance imaging and investigated independently anatomical connectivity via white matter tracts next to brain tissue properties. On the basis of probabilistic diffusion tractography we identified STN subregions with predominantly motor, associative, and limbic connectivity. We then computed for each of the nonoverlapping STN subregions the covariance between local brain tissue properties and the rest of the brain using high-resolution maps of magnetization transfer (MT) saturation and longitudinal (R1) and transverse relaxation rate (R2*). The demonstrated spatial distribution pattern of covariance between brain tissue properties linked to myelin (R1 and MT) and iron (R2*) content clearly segregates between motor and limbic basal ganglia circuits. We interpret the demonstrated covariance pattern as evidence for shared tissue properties within a functional circuit, which is closely linked to its function. Our findings open new possibilities for investigation of changes in the established covariance pattern aiming at accurate diagnosis of basal ganglia disorders and prediction of treatment outcome.


Assuntos
Gânglios da Base/anatomia & histologia , Mapeamento Encefálico , Vias Neurais/anatomia & histologia , Núcleo Subtalâmico/anatomia & histologia , Substância Branca/anatomia & histologia , Adulto , Idoso , Imagem de Tensor de Difusão , Feminino , Lateralidade Funcional , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Probabilidade
18.
PLoS Comput Biol ; 9(4): e1002987, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23592957

RESUMO

The failure of current strategies to provide an explanation for controversial findings on the pattern of pathophysiological changes in Alzheimer's Disease (AD) motivates the necessity to develop new integrative approaches based on multi-modal neuroimaging data that captures various aspects of disease pathology. Previous studies using [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and structural magnetic resonance imaging (sMRI) report controversial results about time-line, spatial extent and magnitude of glucose hypometabolism and atrophy in AD that depend on clinical and demographic characteristics of the studied populations. Here, we provide and validate at a group level a generative anatomical model of glucose hypo-metabolism and atrophy progression in AD based on FDG-PET and sMRI data of 80 patients and 79 healthy controls to describe expected age and symptom severity related changes in AD relative to a baseline provided by healthy aging. We demonstrate a high level of anatomical accuracy for both modalities yielding strongly age- and symptom-severity- dependant glucose hypometabolism in temporal, parietal and precuneal regions and a more extensive network of atrophy in hippocampal, temporal, parietal, occipital and posterior caudate regions. The model suggests greater and more consistent changes in FDG-PET compared to sMRI at earlier and the inversion of this pattern at more advanced AD stages. Our model describes, integrates and predicts characteristic patterns of AD related pathology, uncontaminated by normal age effects, derived from multi-modal data. It further provides an integrative explanation for findings suggesting a dissociation between early- and late-onset AD. The generative model offers a basis for further development of individualized biomarkers allowing accurate early diagnosis and treatment evaluation.


Assuntos
Envelhecimento , Doença de Alzheimer/diagnóstico por imagem , Fluordesoxiglucose F18/farmacologia , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos de Casos e Controles , Progressão da Doença , Feminino , Glucose/metabolismo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Compostos Radiofarmacêuticos/farmacologia , Software
19.
Neuroimage ; 73: 255-9; discussion 265-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22960085

RESUMO

This article has been written as a comment to Dr Thomas and Dr Baker's article "Teaching an adult brain new tricks: A critical review of evidence for training-dependent structural plasticity in humans". We deliberately expand on the key question about the biological substrates underlying use-dependent brain plasticity rather than reiterating the authors' main points of criticism already addressed in more general way by previous publications in the field. The focus here is on the following main issues: i) controversial brain plasticity findings in voxel-based morphometry studies are partially due to the strong dependency of the widely used T1-weighted imaging protocol on varying magnetic resonance contrast contributions; ii) novel concepts in statistical analysis allow one to directly infer topological specificity of structural brain changes associated with plasticity. We conclude that iii) voxel-based quantification of relaxometry derived parameter maps could provide a new perspective on use-dependent plasticity by characterisation of brain tissue property changes beyond the estimation of volume and cortical thickness changes. In the relevant sections we respond to the concerns raised by Dr Thomas and Dr Baker from the perspective of the proposed data acquisition and analysis strategy.


Assuntos
Encéfalo/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Humanos
20.
Curr Opin Neurol ; 26(6): 640-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24184970

RESUMO

PURPOSE OF REVIEW: We present an overview of recent concepts in mechanisms underlying cognitive decline associated with brain aging and neurodegeneration from the perspective of MRI. RECENT FINDINGS: Recent findings challenge the established link between neuroimaging biomarkers of neurodegeneration and age-related or disease-related cognitive decline. Amyloid burden, white matter hyperintensities and local patterns of brain atrophy seem to have differential impact on cognition, particularly on episodic and working memory - the most vulnerable domains in 'normal aging' and Alzheimer's disease. Studies suggesting that imaging biomarkers of neurodegeneration are independent of amyloid-ß give rise to new hypothesis regarding the pathological cascade in Alzheimer's disease. Findings in patients with autosomal-dominant Alzheimer's disease confirm the notion of differential temporal trajectory of amyloid deposition and brain atrophy to add another layer of complexity on the basic mechanisms of cognitive aging and neurodegeneration. Finally, the concept of cognitive reserve in 'supernormal aging' is questioned by evidence for the preservation of neurochemical, structural and functional brain integrity in old age rather than recruitment of 'reserves' for maintaining cognitive abilities. SUMMARY: Recent advances in clinical neuroscience, brain imaging and genetics challenge pathophysiological hypothesis of neurodegeneration and cognitive aging dominating the field in the last decade and call for reconsidering the choice of therapeutic window for early intervention.


Assuntos
Envelhecimento , Encéfalo/anatomia & histologia , Encéfalo/patologia , Transtornos Cognitivos/patologia , Degeneração Neural/patologia , Transtornos Cognitivos/etiologia , Humanos , Degeneração Neural/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA