Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3971, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894596

RESUMO

Dexmedetomidine is an alpha-2 adrenoreceptor agonist with anti-inflammatory and anti-delirogenic properties. Pathogenesis of postoperative delirium (POD) includes cholinergic dysfunction and deregulated inflammatory response to surgical trauma. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are discussed as biomarkers for both POD and severity in acute inflammation. To show whether there is a link between blood cholinesterase activities and dexmedetomidine, we performed a secondary analysis of a randomised, double-blind, placebo-controlled trial that recently showed a lower incidence of POD in the dexmedetomidine group. Abdominal or cardiac surgical patients aged ≥ 60 years were randomised to receive dexmedetomidine or placebo intra- and postoperatively in addition to standard general anaesthesia. We analysed the course of perioperative cholinesterase activities of 56 patients, measured preoperatively and twice postoperatively. Dexmedetomidine resulted in no change in AChE activity and caused a rapid recovery of BChE activity after an initial decrease, while placebo showed a significant decrease in both cholinesterase activities. There were no significant between-group differences at any point in time. From these data it can be assumed that dexmedetomidine could alleviate POD via altering the cholinergic anti-inflammatory pathway (CAIP). We advocate for further investigations to show the direct connection between dexmedetomidine and cholinesterase activity.


Assuntos
Delírio , Dexmedetomidina , Delírio do Despertar , Humanos , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Acetilcolinesterase , Butirilcolinesterase , Delírio/tratamento farmacológico , Delírio/etiologia , Delírio do Despertar/tratamento farmacológico , Método Duplo-Cego
2.
J Neuroimmune Pharmacol ; 17(1-2): 261-276, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34357471

RESUMO

Infections and perioperative stress can lead to neuroinflammation, which in turn is linked to cognitive impairments such as postoperative delirium or postoperative cognitive dysfunctions. The α2-adrenoceptor agonist dexmedetomidine (DEX) prevents cognitive impairments and has organo-protective and anti-inflammatory properties. Macroautophagy (autophagy) regulates many biological processes, but its role in DEX-mediated anti-inflammation and the underlying mechanism of DEX remains largely unclear. We were interested how a pretreatment with DEX protects against lipopolysaccharide (LPS)-induced inflammation in adult male Wistar rats. We used Western blot and activity assays to study how DEX modulated autophagy- and apoptosis-associated proteins as well as molecules of the cholinergic anti-inflammatory pathway, and qPCR to analyse the expression of autophagy and inflammation-associated microRNAs (miRNA) in the spleen, cortex and hippocampus at different time points (6 h, 24 h, 7 d). We showed that a DEX pretreatment prevents LPS-induced impairments in autophagic flux and attenuates the LPS-induced increase in the apoptosis-associated protein cleaved poly(ADP-ribose)-polymerase (PARP) in the spleen. Both, DEX and LPS altered miRNA expression and molecules of the cholinergic anti-inflammatory pathway in the spleen and brain. While only a certain set of miRNAs was up- and/or downregulated by LPS in each tissue, which was prevented or attenuated by a DEX pretreatment in the spleen and hippocampus, all miRNAs were up- and/or downregulated by DEX itself - independent of whether or not they were altered by LPS. Our results indicate that the organo-protective effect of DEX may be mediated by autophagy, possibly by acting on associated miRNAs, and the cholinergic anti-inflammatory pathway. Preventive effects of DEX on LPS-induced inflammation. DEX restores the LPS-induced impairments in autophagic flux, attenuates PARP cleavage and alters molecules of the cholinergic system in the spleen. Furthermore, DEX alters and prevents LPS-induced miRNA expression changes in the spleen and brain along with LPS.


Assuntos
MicroRNAs , Neuroimunomodulação , Masculino , Animais , Ratos , Lipopolissacarídeos/toxicidade , Ratos Wistar , Autofagia
3.
Biomaterials ; 91: 151-165, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27031810

RESUMO

microRNA-124 (miR-124), the most abundant miRNA of the CNS, was recently shown to modulate the polarization of activated microglia and infiltrating macrophages towards the anti-inflammatory M2 phenotype and protect neurons in various ways after brain disease. In ischemic stroke, microglia and macrophages of a detrimental and persistent pro-inflammatory M1 phenotype have been shown to aggravate the secondary injury. Thus, shifting the polarization of microglia/macrophages into the beneficial, anti-inflammatory M2-like phenotype is considered neuroprotective after stroke onset. Here, we have induced 30 min transient occlusion of the right middle cerebral artery (MCAO) in 34 male, C57BL/6 mice. Lesion development was monitored with T2-weighted MRI. Liposomated miR-124 was injected in 11 animals at 48 h and in 5 animals at 10 days after MCAO. Arg-1, a marker for M2 phenotype, was co-stained with Iba-1, NeuN or GFAP. The distribution of astrocytes, neurons and microglia/macrophages and their expression of Arg-1 were quantified. Early miR-124 injection resulted in a significantly increased neuronal survival and a significantly increased number of M2-like polarized microglia/macrophages. Moreover, the lesion core, delineated by reactive astrocytes, was significantly reduced over time upon early miR-124 injection. These neuroprotective and anti-inflammatory effects of the early miR-124 treatment were pronounced during the first week with Arg-1. Number of Arg-1+ microglia/macrophages correlated with neuronal protection and with functional improvement during the first week. Thus, our present results demonstrate that miR-124 may serve as a novel therapeutic strategy for neuroprotection and functional recovery upon stroke onset.


Assuntos
Encéfalo/patologia , Infarto da Artéria Cerebral Média/terapia , MicroRNAs/uso terapêutico , Neuroproteção , Animais , Arginase/análise , Infarto da Artéria Cerebral Média/patologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/patologia , Neurônios/patologia
4.
J Neuroimmune Pharmacol ; 11(4): 733-748, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27539642

RESUMO

Mononuclear phagocytes respond to ischemic stroke dynamically, undergoing an early anti-inflammatory and protective phenotype followed by the pro-inflammatory and detrimental type. These dual roles of microglia/macrophages suggest the need of subtle adjustment of their polarization state instead of broad suppression. The most abundant brain-specific miRNA, miR-124, promotes neuronal differentiation but can also modulate microglia activation and keeps them in a quiescent state. We addressed whether the intracerebral injection of miR-124 in a mouse model of ischemic stroke before or after the peak phase of the pro-inflammatory polarization modifies the pro-/anti- inflammatory balance. In the sub-acute phase, 48 h after stroke, liposomated miR-124 shifted the predominantly pro-inflammatory polarized microglia/macrophages toward the anti-inflammatory phenotype. The altered immune response improved neurological deficit at day 6 after stroke. When miR-124 was injected 10 days after stroke, the pro-/anti- inflammatory ratio was still significantly reduced although to a lower degree and had no effect on recovery at day 14. This study indicates that miR-124 administration before the peak of the pro-inflammatory process of stroke is most effective in support of increasing the rehabilitation opportunity in the sub-acute phases of stroke. Our findings highlight the important role of immune cells after stroke and the therapeutic relevance of their polarization balance.


Assuntos
Isquemia Encefálica/imunologia , Polaridade Celular/fisiologia , Macrófagos/fisiologia , MicroRNAs/administração & dosagem , Microglia/fisiologia , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Injeções Intraventriculares , Masculino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA