RESUMO
Herbicide metolachlor (MET) and insecticide buprofezin (BUP) were determined in natural waters by means of a newly-developed, simple and sensitive thermochemically-induced fluorescence derivatization (TIFD) method. The TIFD approach is based on the thermolysis transformation of naturally non-fluorescent pesticides into fluorescent complex O-phthalaldehyde-thermoproduct(s) in water at 70°C for MET and at 80°C for BUP. The TIFD method was optimized with respect to the temperature, pH, complex formation kinetic and pesticides concentrations. The limit of detection (LOD=0.8ngmL(-1) for MET and 3.0ngmL(-1) for BUP) and quantification (LOQ=2.6ngmL(-1) for MET and 9.5 ngmL(-1) for BUP) values were low, and the relative standard deviation (RSD) values were small (between 1.2% and 1.8%), which indicates a good analytical sensitivity and a great repeatability of TIFD method. Recovery studies were performed on spiked well, sea and draining waters samples collected in the Niayes area by using the solid phase extraction (SPE) procedure. Satisfactory recovery results (84-118%) were obtained for the determination of MET and BUP in these natural waters.
Assuntos
Acetamidas/análise , Tiadiazinas/análise , Poluentes Químicos da Água/análise , o-Ftalaldeído/química , Acetamidas/química , Calibragem , Água Doce/análise , Água Doce/química , Concentração de Íons de Hidrogênio , Cinética , Reprodutibilidade dos Testes , Água do Mar/análise , Água do Mar/química , Espectrometria de Fluorescência , Temperatura , Tiadiazinas/químicaRESUMO
In alkaline medium, the complex formed between putrescine and orthophthalaldehyde was studied using spectrofluorescence. The derivative is kinetically stable 24 h after complexation. The stoichiometry of the complex is 1:1 at maximum fluorescence intensity, also 24 h after complexation.