Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2322164121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687799

RESUMO

Proteins carrying a signal peptide and/or a transmembrane domain enter the intracellular secretory pathway at the endoplasmic reticulum (ER) and are transported to the Golgi apparatus via COPII vesicles or tubules. SAR1 initiates COPII coat assembly by recruiting other coat proteins to the ER membrane. Mammalian genomes encode two SAR1 paralogs, SAR1A and SAR1B. While these paralogs exhibit ~90% amino acid sequence identity, it is unknown whether they perform distinct or overlapping functions in vivo. We now report that genetic inactivation of Sar1a in mice results in lethality during midembryogenesis. We also confirm previous reports that complete deficiency of murine Sar1b results in perinatal lethality. In contrast, we demonstrate that deletion of Sar1b restricted to hepatocytes is compatible with survival, though resulting in hypocholesterolemia that can be rescued by adenovirus-mediated overexpression of either SAR1A or SAR1B. To further examine the in vivo function of these two paralogs, we genetically engineered mice with the Sar1a coding sequence replacing that of Sar1b at the endogenous Sar1b locus. Mice homozygous for this allele survive to adulthood and are phenotypically normal, demonstrating complete or near-complete overlap in function between the two SAR1 protein paralogs in mice. These data also suggest upregulation of SAR1A gene expression as a potential approach for the treatment of SAR1B deficiency (chylomicron retention disease) in humans.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Animais , Humanos , Camundongos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Retículo Endoplasmático/metabolismo , Hepatócitos/metabolismo , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética
2.
J Proteome Res ; 22(11): 3439-3446, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37844105

RESUMO

Most proteins secreted into the extracellular space are first recruited from the endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that facilitate their transport to the Golgi apparatus. Although several secreted proteins have been shown to be actively recruited into COPII vesicles and tubules by the cargo receptors LMAN1 and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7 cells, whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes suggests that cargo recognition is governed by complex mechanisms rather than interaction with a universal binding motif..


Assuntos
Proteínas de Transporte , Retículo Endoplasmático , Proteínas de Membrana , Humanos , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi , Proteínas de Membrana/metabolismo , Transporte Proteico
3.
J Biol Chem ; 298(1): 101536, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954140

RESUMO

SEC23B is one of two vertebrate paralogs of SEC23, a key component of the coat protein complex II vesicles. Complete deficiency of SEC23B in mice leads to perinatal death caused by massive degeneration of professional secretory tissues. However, functions of SEC23B in postnatal mice and outside professional secretory tissues are unclear. In this study, we generated a Sec23b KO mouse and a knockin (KI) mouse with the E109K mutation, the most common human mutation in congenital dyserythropoietic anemia type II patients. We found that E109K mutation led to decreases in SEC23B levels and protein mislocalization. However, Sec23bki/ki mice showed no obvious abnormalities. Sec23b hemizygosity (Sec23bki/ko) was partially lethal, with only half of expected hemizygous mice surviving past weaning. Surviving Sec23bki/ko mice exhibited exocrine insufficiency, increased endoplasmic reticulum stress and apoptosis in the pancreas, and phenotypes consistent with chronic pancreatitis. Sec23bki/ko mice had mild to moderate anemia without other typical congenital dyserythropoietic anemia type II features, likely resulting from exocrine insufficiency. Moreover, Sec23bki/ko mice exhibited severe growth restriction accompanied by growth hormone (GH) insensitivity, reminiscent of Laron syndrome. Growth restriction is not associated with hepatocyte-specific Sec23b deletion, suggesting a nonliver origin of this phenotype. We propose that inflammation associated with chronic pancreatic deficiency may explain GH insensitivity in Sec23bki/ko mice. Our results reveal a genotype-phenotype correlation in SEC23B deficiency and indicate that pancreatic acinar is most sensitive to SEC23B deficiency in adult mice. The Sec23bki/ko mice provide a novel model of chronic pancreatitis and growth retardation with GH insensitivity.


Assuntos
Anemia Diseritropoética Congênita , Mutação de Sentido Incorreto , Pancreatite Crônica , Proteínas de Transporte Vesicular , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/metabolismo , Animais , Camundongos , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Fenótipo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
Blood ; 138(18): 1691-1704, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34324630

RESUMO

Histone H3 lysine 4 methylation (H3K4Me) is most often associated with chromatin activation, and removing H3K4 methyl groups has been shown to be coincident with gene repression. H3K4Me demethylase KDM1a/LSD1 is a therapeutic target for multiple diseases, including for the potential treatment of ß-globinopathies (sickle cell disease and ß-thalassemia), because it is a component of γ-globin repressor complexes, and LSD1 inactivation leads to robust induction of the fetal globin genes. The effects of LSD1 inhibition in definitive erythropoiesis are not well characterized, so we examined the consequences of conditional inactivation of Lsd1 in adult red blood cells using a new Gata1creERT2 bacterial artificial chromosome transgene. Erythroid-specific loss of Lsd1 activity in mice led to a block in erythroid progenitor differentiation and to the expansion of granulocyte-monocyte progenitor-like cells, converting hematopoietic differentiation potential from an erythroid fate to a myeloid fate. The analogous phenotype was also observed in human hematopoietic stem and progenitor cells, coincident with the induction of myeloid transcription factors (eg, PU.1 and CEBPα). Finally, blocking the activity of the transcription factor PU.1 or RUNX1 at the same time as LSD1 inhibition rescued myeloid lineage conversion to an erythroid phenotype. These data show that LSD1 promotes erythropoiesis by repressing myeloid cell fate in adult erythroid progenitors and that inhibition of the myeloid-differentiation pathway reverses the lineage switch induced by LSD1 inactivation.


Assuntos
Células Eritroides/citologia , Eritropoese , Histona Desmetilases/metabolismo , Células Mieloides/citologia , Animais , Linhagem Celular , Células Cultivadas , Células Eritroides/metabolismo , Deleção de Genes , Histona Desmetilases/genética , Humanos , Camundongos , Células Mieloides/metabolismo
5.
Curr Opin Hematol ; 29(3): 126-136, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35441598

RESUMO

PURPOSE OF REVIEW: The congenital dyserythropoietic anemias (CDA) are hereditary disorders characterized by ineffective erythropoiesis. This review evaluates newly developed CDA disease models, the latest advances in understanding the pathogenesis of the CDAs, and recently identified CDA genes. RECENT FINDINGS: Mice exhibiting features of CDAI were recently generated, demonstrating that Codanin-1 (encoded by Cdan1) is essential for primitive erythropoiesis. Additionally, Codanin-1 was found to physically interact with CDIN1, suggesting that mutations in CDAN1 and CDIN1 result in CDAI via a common mechanism. Recent advances in CDAII (which results from SEC23B mutations) have also been made. SEC23B was found to functionally overlap with its paralogous protein, SEC23A, likely explaining the absence of CDAII in SEC23B-deficient mice. In contrast, mice with erythroid-specific deletion of 3 or 4 of the Sec23 alleles exhibited features of CDAII. Increased SEC23A expression rescued the CDAII erythroid defect, suggesting a novel therapeutic strategy for the disease. Additional recent advances included the identification of new CDA genes, RACGAP1 and VPS4A, in CDAIII and a syndromic CDA type, respectively. SUMMARY: Establishing cellular and animal models of CDA is expected to result in improved understanding of the pathogenesis of these disorders, which may ultimately lead to the development of new therapies.


Assuntos
Anemia Diseritropoética Congênita , ATPases Vacuolares Próton-Translocadoras , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/metabolismo , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Eritropoese/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Camundongos , Mutação , Proteínas Nucleares/genética , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(33): E7748-E7757, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30065114

RESUMO

Approximately one-third of the mammalian proteome is transported from the endoplasmic reticulum-to-Golgi via COPII-coated vesicles. SEC23, a core component of coat protein-complex II (COPII), is encoded by two paralogous genes in vertebrates (Sec23a and Sec23b). In humans, SEC23B deficiency results in congenital dyserythropoietic anemia type-II (CDAII), while SEC23A deficiency results in a skeletal phenotype (with normal red blood cells). These distinct clinical disorders, together with previous biochemical studies, suggest unique functions for SEC23A and SEC23B. Here we show indistinguishable intracellular protein interactomes for human SEC23A and SEC23B, complementation of yeast Sec23 by both human and murine SEC23A/B, and rescue of the lethality of sec23b deficiency in zebrafish by a sec23a-expressing transgene. We next demonstrate that a Sec23a coding sequence inserted into the murine Sec23b locus completely rescues the lethal SEC23B-deficient pancreatic phenotype. We show that SEC23B is the predominantly expressed paralog in human bone marrow, but not in the mouse, with the reciprocal pattern observed in the pancreas. Taken together, these data demonstrate an equivalent function for SEC23A/B, with evolutionary shifts in the transcription program likely accounting for the distinct phenotypes of SEC23A/B deficiency within and across species, a paradigm potentially applicable to other sets of paralogous genes. These findings also suggest that enhanced erythroid expression of the normal SEC23A gene could offer an effective therapeutic approach for CDAII patients.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Eritrócitos/metabolismo , Complexos Multiproteicos/biossíntese , Proteínas de Transporte Vesicular/biossíntese , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/metabolismo , Medula Óssea/metabolismo , Medula Óssea/patologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Eritrócitos/patologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Complexos Multiproteicos/genética , Especificidade da Espécie , Proteínas de Transporte Vesicular/genética
7.
J Oncol Pharm Pract ; 26(7): 1695-1702, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32605495

RESUMO

Acquired thrombotic thrombocytopenic purpura is a rare blood disorder with a high early mortality rate, if untreated. Standard of care plasma exchange and glucocorticoids have dramatically improved survival. However, additional advancements are necessary to further decrease mortality. Caplacizumab-yhdp (Cablivi®) is the first Food and Drug Administration-approved treatment indicated for adult patients with acquired thrombotic thrombocytopenic purpura, in combination with plasma exchange and immunosuppressive therapy. However, there are considerable risks associated with the use of caplacizumab and they must be weighed against the benefits of the medication.


Assuntos
Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Anticorpos de Domínio Único/uso terapêutico , Ensaios Clínicos como Assunto , Custos de Medicamentos , Humanos , Troca Plasmática , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/efeitos adversos , Anticorpos de Domínio Único/farmacologia
8.
Br J Haematol ; 186(4): 574-579, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31119735

RESUMO

Hereditary thrombocytopenias can be subclassified based on mode of inheritance and platelet size. Here we report a family with autosomal dominant (AD) thrombocytopenia with normal platelet size. Linkage analysis and whole exome sequencing identified the R1026W substitution in ITGA2B as the causative defect. The same mutation has been previously reported in 7 Japanese families/patients with AD thrombocytopenia, but all of these patients had macrothrombocytopenia. This is the first report of a family with AD thrombocytopenia with normal platelet size resulting from mutation in ITGA2B. ITGA2B mutations should therefore be included in the differential diagnosis of this latter disorder.


Assuntos
Sequenciamento do Exoma , Ligação Genética , Integrina alfa2/genética , Mutação , Trombocitopenia/diagnóstico , Trombocitopenia/genética , Plaquetas/metabolismo , Medula Óssea/patologia , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Repetições de Microssatélites , Linhagem , Contagem de Plaquetas , Análise de Sequência de DNA
9.
J Cancer Educ ; 32(4): 871-877, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27055536

RESUMO

Influenza morbidity and mortality can be severe and costly. Vaccination rates remain suboptimal in cancer patients due to provider- and patient-related factors. The objective of this study was to evaluate whether low-cost provider- and patient-focused interventions would increase influenza vaccination rates at the University of Michigan Comprehensive Cancer Center (UMCCC). This quality improvement project included all patients without documentation of influenza vaccination prior to their first outpatient appointment during the 2011-2012 and 2012-2013 influenza seasons. The multi-stepped intervention included provider and patient reminders. Influenza vaccination rates were compiled using CPT-4 codes. Same-day (with appointment) vaccination rates during the intervention seasons were compared to historical (2005-2011 seasons) controls; vaccination rates were also compared to contemporary control population at the University of Michigan Health System (UMHS). Reasons for non-adherence with vaccination were explored. The cumulative same-day vaccination rate in eligible adults was 10.1 % (2011-2012) and 9.4 % (2012-2013) compared to an average 6.9 % during influenza seasons 2005-2011. Based on logistic regression analysis, there was a 37.6 % (95 % CI 35-40.3 %) and 56.1 % (95 % CI 40.9-73 %) relative increase in the adult vaccination rate associated with the intervention, with 399 and 697 additional vaccinations, respectively, for each season. During the 2012-2013 season, the UMCCC adult vaccination rate was higher compared to the remainder of that of the UMHS. The intervention was well accepted by providers. Reasons for no vaccination were provider- and patient-related. Increasing provider and patient awareness with a simple, inexpensive intervention was associated with higher influenza vaccination rates at a large academic cancer center. The intervention is permanently implemented during influenza seasons.


Assuntos
Institutos de Câncer , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Vacinação/estatística & dados numéricos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Melhoria de Qualidade , Estações do Ano
10.
Blood ; 123(24): 3697-705, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24719406

RESUMO

The primary cellular source of factor VIII (FVIII) biosynthesis is controversial, with contradictory evidence supporting an endothelial or hepatocyte origin. LMAN1 is a cargo receptor in the early secretory pathway that is responsible for the efficient secretion of factor V (FV) and FVIII to the plasma. Lman1 mutations result in combined deficiency of FV and FVIII, with levels of both factors reduced to ~10% to 15% of normal in human patients. We generated Lman1 conditional knockout mice to characterize the FVIII secretion profiles of endothelial cells and hepatocytes. We demonstrate that endothelial cells are the primary biosynthetic source of murine FVIII and that hepatocytes make no significant contribution to the plasma FVIII pool. Utilizing RiboTag mice and polyribosome immunoprecipitation, we performed endothelial cell-specific messenger RNA isolation and quantitative polymerase chain reaction analyses to confirm that endothelial cells highly express F8 and to explore the heterogeneity of F8 expression in different vascular beds. We demonstrate that endothelial cells from multiple, but not all, tissues contribute to the plasma FVIII pool in the mouse.


Assuntos
Células Endoteliais/metabolismo , Fator VIII/biossíntese , Animais , Células Sanguíneas/metabolismo , Células Cultivadas , Fator V/genética , Fator V/metabolismo , Feminino , Hepatócitos/metabolismo , Masculino , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
11.
Blood ; 124(20): 3155-64, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25208887

RESUMO

Plasminogen is the precursor of the serine protease plasmin, a central enzyme of the fibrinolytic system. Plasma levels of plasminogen vary by almost 2-fold among healthy individuals, yet little is known about its heritability or genetic determinants in the general population. In order to identify genetic factors affecting the natural variation of plasminogen levels, we performed a genome-wide association study and linkage analysis in a sample of 3456 young healthy individuals who participated in the Genes and Blood Clotting Study (GABC) or the Trinity Student Study (TSS). Heritability of plasminogen levels was 48.1% to 60.0%. Tobacco smoking and female sex were associated with higher levels of plasminogen. In the meta-analysis, 11 single-nucleotide polymorphisms (SNPs) in 2 regions reached genome-wide significance (P < 5.0E-8). Of these, 9 SNPs were near the PLG or LPA genes on Chr6q26, whereas 2 were on Chr19q13 and 5' upstream of SIGLEC14. These 11 SNPs represented 4 independent signals and collectively explained 6.8% of plasminogen level variation in the study populations. The strongest association was observed for a nonsynonymous SNP in the PLG gene (R523W). Individuals bearing an additional copy of this allele had an average decrease of 13.4% in plasma plasminogen level.


Assuntos
Apolipoproteínas A/genética , Lectinas/genética , Plasminogênio/análise , Plasminogênio/genética , Receptores de Superfície Celular/genética , Fumar/sangue , Adolescente , Adulto , Estudos de Coortes , Feminino , Deleção de Genes , Ligação Genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Adulto Jovem
12.
Blood ; 120(1): 31-8, 2012 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-22586181

RESUMO

Multiple diseases, hematologic and nonhematologic, result from defects in the early secretory pathway. Congenital dyserythropoietic anemia type II (CDAII) and combined deficiency of coagulation factors V and VIII (F5F8D) are the 2 known hematologic diseases that result from defects in the endoplasmic reticulum (ER)-to-Golgi transport system. CDAII is caused by mutations in the SEC23B gene, which encodes a core component of the coat protein complex II (COPII). F5F8D results from mutations in either LMAN1 (lectin mannose-binding protein 1) or MCFD2 (multiple coagulation factor deficiency protein 2), which encode the ER cargo receptor complex LMAN1-MCFD2. These diseases and their molecular pathogenesis are the focus of this review.


Assuntos
Anemia Diseritropoética Congênita , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/patologia , Deficiência do Fator V , Hemofilia A , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/metabolismo , Anemia Diseritropoética Congênita/patologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Deficiência do Fator V/genética , Deficiência do Fator V/metabolismo , Deficiência do Fator V/patologia , Hemofilia A/genética , Hemofilia A/metabolismo , Hemofilia A/patologia , Humanos , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
13.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38463989

RESUMO

Proteins carrying a signal peptide and/or a transmembrane domain enter the intracellular secretory pathway at the endoplasmic reticulum (ER) and are transported to the Golgi apparatus via COPII vesicles or tubules. SAR1 initiates COPII coat assembly by recruiting other coat proteins to the ER membrane. Mammalian genomes encode two SAR1 paralogs, SAR1A and SAR1B. While these paralogs exhibit ~90% amino acid sequence identity, it is unknown whether they perform distinct or overlapping functions in vivo. We now report that genetic inactivation of Sar1a in mice results in lethality during mid-embryogenesis. We also confirm previous reports that complete deficiency of murine Sar1b results in perinatal lethality. In contrast, we demonstrate that deletion of Sar1b restricted to hepatocytes is compatible with survival, though resulting in hypocholesterolemia that can be rescued by adenovirus-mediated overexpression of either SAR1A or SAR1B. To further examine the in vivo function of these 2 paralogs, we genetically engineered mice with the Sar1a coding sequence replacing that of Sar1b at the endogenous Sar1b locus. Mice homozygous for this allele survive to adulthood and are phenotypically normal, demonstrating complete or near-complete overlap in function between the two SAR1 protein paralogs in mice. These data also suggest upregulation of SAR1A gene expression as a potential approach for the treatment of SAR1B deficiency (chylomicron retention disease) in humans.

15.
Blood Adv ; 7(19): 5727-5732, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37552129

RESUMO

Our current understanding of the kinetics and dynamics of erythroid differentiation is based almost entirely on the ex vivo expansion of cultured hematopoietic progenitor cells. In this study, we used an erythroid-specific, inducible transgenic mouse line to investigate for the first time, the in vivo erythroid differentiation kinetics under steady-state conditions. We demonstrated that bipotent premegakaroycyte/erythroid (PreMegE) progenitor cells differentiate into erythroid-committed proerythroblast/basophilic erythroblasts (ProBasoE) after 6.6 days under steady-state conditions. During this process, each differentiation phase (from PreMegE to precolony forming unit-erythroid [PreCFU-E], PreCFU-E to CFU-E, and CFU-E to ProBasoE) took ∼2 days in vivo. Upon challenge with 5-flurouracil (5-FU), which leads to the induction of stress erythropoiesis, erythroid maturation time was reduced from 6.6 to 4.7 days. Furthermore, anemia induced in 5-FU-treated mice was shown to be due not only to depleted bone marrow erythroid progenitor stores but also to a block in reticulocyte exit from the bone marrow into the circulation, which differed from the mechanism induced by acute blood loss.


Assuntos
Anemia , Camundongos , Animais , Células-Tronco Hematopoéticas , Medula Óssea , Diferenciação Celular , Fluoruracila
16.
Blood Adv ; 6(11): 3280-3285, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35240686

RESUMO

Human γ-globin is predominantly expressed in fetal liver erythroid cells during gestation from 2 nearly identical genes, HBG1 and HBG2, that are both perinatally silenced. Reactivation of these fetal genes in adult red blood cells can ameliorate many symptoms associated with the inherited ß-globinopathies, sickle cell disease, and Cooley anemia. Although promising genetic strategies to reactivate the γ-globin genes to treat these diseases have been explored, there are significant barriers to their effective implementation worldwide; alternatively, pharmacological induction of γ-globin synthesis could readily reach the majority of affected individuals. In this study, we generated a CRISPR knockout library that targeted all erythroid genes for which prospective or actual therapeutic compounds already exist. By probing this library for genes that repress fetal hemoglobin (HbF), we identified several novel, potentially druggable, γ-globin repressors, including VHL and PTEN. We demonstrate that deletion of VHL induces HbF through activation of the HIF1α pathway and that deletion of PTEN induces HbF through AKT pathway stimulation. Finally, we show that small-molecule inhibitors of PTEN and EZH induce HbF in both healthy and ß-thalassemic human primary erythroid cells.


Assuntos
Talassemia beta , gama-Globinas , Adulto , Células Eritroides/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Humanos , Estudos Prospectivos , Talassemia beta/genética , Talassemia beta/terapia , gama-Globinas/genética , gama-Globinas/metabolismo
17.
Elife ; 112022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36193893

RESUMO

PCSK9 negatively regulates low-density lipoprotein receptor (LDLR) abundance on the cell surface, leading to decreased hepatic clearance of LDL particles and increased levels of plasma cholesterol. We previously identified SURF4 as a cargo receptor that facilitates PCSK9 secretion in HEK293T cells (Emmer et al., 2018). Here, we generated hepatic SURF4-deficient mice (Surf4fl/fl Alb-Cre+) to investigate the physiologic role of SURF4 in vivo. Surf4fl/fl Alb-Cre+ mice exhibited normal viability, gross development, and fertility. Plasma PCSK9 levels were reduced by ~60% in Surf4fl/fl Alb-Cre+ mice, with a corresponding ~50% increase in steady state LDLR protein abundance in the liver, consistent with SURF4 functioning as a cargo receptor for PCSK9. Surprisingly, these mice exhibited a marked reduction in plasma cholesterol and triglyceride levels out of proportion to the partial increase in hepatic LDLR abundance. Detailed characterization of lipoprotein metabolism in these mice instead revealed a severe defect in hepatic lipoprotein secretion, consistent with prior reports of SURF4 also promoting the secretion of apolipoprotein B (APOB). Despite a small increase in liver mass and lipid content, histologic evaluation revealed no evidence of steatohepatitis or fibrosis in Surf4fl/fl Alb-Cre+ mice. Acute depletion of hepatic SURF4 by CRISPR/Cas9 or liver-targeted siRNA in adult mice confirms these findings. Together, these data support the physiologic significance of SURF4 in the hepatic secretion of PCSK9 and APOB-containing lipoproteins and its potential as a therapeutic target in atherosclerotic cardiovascular diseases.


Assuntos
Pró-Proteína Convertase 9 , Receptores de LDL , Camundongos , Humanos , Animais , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , RNA Interferente Pequeno/metabolismo , Células HEK293 , Camundongos Endogâmicos C57BL , Receptores de LDL/genética , Receptores de LDL/metabolismo , Fígado/metabolismo , Apolipoproteínas B/metabolismo , Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
18.
J Clin Invest ; 131(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33463537

RESUMO

T cell-mediated responses are dependent on their secretion of key effector molecules. However, the critical molecular determinants of the secretion of these proteins are largely undefined. Here, we demonstrate that T cell activation increases trafficking via the ER-to-Golgi pathway. To study the functional role of this pathway, we generated mice with a T cell-specific deletion in SEC23B, a core subunit of coat protein complex II (COPII). We found that SEC23B critically regulated the T cell secretome following activation. SEC23B-deficient T cells exhibited a proliferative defect and reduced effector functions in vitro, as well as in experimental models of allogeneic and xenogeneic hematopoietic cell transplantation in vivo. However, T cells derived from 3 patients with congenital dyserythropoietic anemia II (CDAII), which results from Sec23b mutation, did not exhibit a similar phenotype. Mechanistic studies demonstrated that unlike murine KO T cells, T cells from patients with CDAII harbor increased levels of the closely related paralog, SEC23A. In vivo rescue of murine KO by expression of Sec23a from the Sec23b genomic locus restored T cell functions. Together, our data demonstrate a critical role for the COPII pathway, with evidence for functional overlap in vivo between SEC23 paralogs in the regulation of T cell immunity in both mice and humans.


Assuntos
Autoimunidade , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/imunologia , Retículo Endoplasmático/imunologia , Complexo de Golgi/imunologia , Linfócitos T/imunologia , Animais , Transporte Biológico Ativo/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Humanos , Camundongos , Camundongos Knockout
19.
Sci Adv ; 7(48): eabj5293, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34818036

RESUMO

Congenital dyserythropoietic anemia type II (CDAII) results from loss-of-function mutations in SEC23B. In contrast to humans, SEC23B-deficient mice deletion do not exhibit CDAII but die perinatally with pancreatic degeneration. Here, we demonstrate that expression of the full SEC23A protein (the SEC23B paralog) from the endogenous regulatory elements of Sec23b completely rescues the SEC23B-deficient mouse phenotype. Consistent with these data, while mice with erythroid-specific deletion of either Sec23a or Sec23b do not exhibit CDAII, we now show that mice with erythroid-specific deletion of all four Sec23 alleles die in mid-embryogenesis with features of CDAII and that mice with deletion of three Sec23 alleles exhibit a milder erythroid defect. To test whether the functional overlap between the SEC23 paralogs is conserved in human erythroid cells, we generated SEC23B-deficient HUDEP-2 cells. Upon differentiation, these cells exhibited features of CDAII, which were rescued by increased expression of SEC23A, suggesting a novel therapeutic strategy for CDAII.

20.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33822766

RESUMO

Telomerase catalyzes chromosome end replication in stem cells and other long-lived cells. Mutations in telomerase or telomere-related genes result in diseases known as telomeropathies. Telomerase is recruited to chromosome ends by the ACD/TPP1 protein (TPP1 hereafter), a component of the shelterin complex that protects chromosome ends from unwanted end joining. TPP1 facilitates end protection by binding shelterin proteins POT1 and TIN2. TPP1 variants have been associated with telomeropathies but remain poorly characterized in vivo. Disease variants and mutagenesis scans provide efficient avenues to interrogate the distinct physiological roles of TPP1. Here, we conduct mutagenesis in the TIN2- and POT1-binding domains of TPP1 to discover mutations that dissect TPP1's functions. Our results extend current structural data to reveal that the TPP1-TIN2 interface is more extensive than previously thought and highlight the robustness of the POT1-TPP1 interface. Introduction of separation-of-function mutants alongside known TPP1 telomeropathy mutations in mouse hematopoietic stem cells (mHSCs) lacking endogenous TPP1 demonstrated a clear phenotypic demarcation. TIN2- and POT1-binding mutants were unable to rescue mHSC failure resulting from end deprotection. In contrast, TPP1 telomeropathy mutations sustained mHSC viability, consistent with their selectively impacting end replication. These results highlight the power of scanning mutagenesis in revealing structural interfaces and dissecting multifunctional genes.


Assuntos
Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Complexo Shelterina/metabolismo , Proteínas de Ligação a Telômeros/genética , Animais , Sobrevivência Celular/genética , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Complexo Shelterina/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA