Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mass Spectrom Rev ; 39(1-2): 212-226, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30921495

RESUMO

In addition to degradation products, impurities, and exogenous contaminants, industries such as pharmaceutical, food, and others must concern themselves with leachables. These chemicals can derive from containers and closures or migrate from labels or secondary containers and packaging to make their way into products. Identification and quantification of extractables (potential leachables) and leachables, typically trace level analytes, is a regulatory expectation intended to ensure consumer safety and product fidelity. Mass spectrometry and related techniques have played a significant role in the analysis of extractables and leachables (E&L). This review provides an overview of how mass spectrometry is used for E&L studies, primarily in the context of the pharmaceutical industry. This review includes work flows, examples of how identification and quantification is done, and the importance of orthogonal data from several different detectors. E&L analyses are driven by the need for consumer safety. These studies are expected to expand in existing areas (e.g., food, textiles, toys, etc.) and into new, currently unregulated product areas. Thus, this topic is of interest to audiences beyond just the pharmaceutical and health care industries. Finally, the potential of universal detector approaches used in other areas is suggested as an opportunity to drive E&L research progress in this arguably understudied, under-published realm.


Assuntos
Contaminação de Medicamentos , Embalagem de Medicamentos , Espectrometria de Massas/métodos , Embalagem de Medicamentos/instrumentação , Embalagem de Medicamentos/métodos , Humanos , Espectrometria de Massas/instrumentação , Teste de Materiais , Preparações Farmacêuticas/química
2.
PDA J Pharm Sci Technol ; 78(3): 214-236, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942477

RESUMO

Leachables in pharmaceutical products may react with biomolecule active pharmaceutical ingredients (APIs), for example, monoclonal antibodies (mAb), peptides, and ribonucleic acids (RNA), potentially compromising product safety and efficacy or impacting quality attributes. This investigation explored a series of in silico models to screen extractables and leachables to assess their possible reactivity with biomolecules. These in silico models were applied to collections of known leachables to identify functional and structural chemical classes likely to be flagged by these in silico approaches. Flagged leachable functional classes included antimicrobials, colorants, and film-forming agents, whereas specific chemical classes included epoxides, acrylates, and quinones. In addition, a dataset of 22 leachables with experimental data indicating their interaction with insulin glargine was used to evaluate whether one or more in silico methods are fit-for-purpose as a preliminary screen for assessing this biomolecule reactivity. Analysis of the data showed that the sensitivity of an in silico screen using multiple methodologies was 80%-90% and the specificity was 58%-92%. A workflow supporting the use of in silico methods in this field is proposed based on both the results from this assessment and best practices in the field of computational modeling and quality risk management.


Assuntos
Simulação por Computador , Contaminação de Medicamentos , Contaminação de Medicamentos/prevenção & controle , Preparações Farmacêuticas/química , Preparações Farmacêuticas/análise , Anticorpos Monoclonais/química
3.
Nat Biotechnol ; 20(7): 713-6, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12089557

RESUMO

The antibacterial properties of macrolide antibiotics (such as erythromycin, tylosin, and narbomycin) depend ultimately on the glycosylation of otherwise inactive polyketide lactones. Among the sugars commonly found in such macrolides are various 6-deoxyhexoses including the 3-dimethylamino sugars mycaminose and desosamine (4-deoxymycaminose). Some macrolides (such as tylosin) possess multiple sugar moieties, whereas others (such as narbomycin) have only single sugar substituents. As patterns of glycosylation markedly influence a macrolide's drug activity, there is considerable interest in the possibility of using combinatorial biosynthesis to generate new pairings of polyketide lactones with sugars, especially 6-deoxyhexoses. Here, we report a successful attempt to alter the aminodeoxyhexose-biosynthetic capacity of Streptomyces fradiae (a producer of tylosin) by importing genes from the narbomycin producer Streptomyces narbonensis. This engineered S. fradiae produced substantial amounts of two potentially useful macrolides that had not previously been obtained by fermentation.


Assuntos
Amino Açúcares/biossíntese , Amino Açúcares/genética , Glucosamina/análogos & derivados , Glucosamina/biossíntese , Glucosamina/genética , Streptomyces/genética , Streptomyces/metabolismo , Regulação Bacteriana da Expressão Gênica , Engenharia Genética/métodos , Macrolídeos/metabolismo , Transformação Bacteriana
4.
J Antibiot (Tokyo) ; 56(5): 481-7, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12870814

RESUMO

Synthesis is described for the haptens 23-demycinosyl-23-deoxy-23-(3-aminoprop-1-yl)-aminotilmicosin (6) from 5-O-mycaminosyltylonolide (OMT) and for 23-demycinosyl-23-deoxy-23-(3-aminoprop-1-yl)-amino-20-dihydrotylosin (10) from demycinosyltylosin (DMT), respectively. The mild reaction conditions used to synthesize the second hapten, DMT derivative 10, were necessary to overcome instabilities and acid lability of DMT. The haptens synthesized here may be further used to produce protein conjugates useful in developing antibodies against the antibiotics tilmicosin and tylosin.


Assuntos
Antibacterianos/síntese química , Haptenos , Macrolídeos , Proteínas/administração & dosagem , Tilosina/análogos & derivados , Tilosina/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA