Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.229
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(1): 95-109.e26, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181745

RESUMO

DddA-derived cytosine base editors (DdCBEs) and transcription activator-like effector (TALE)-linked deaminases (TALEDs) catalyze targeted base editing of mitochondrial DNA (mtDNA) in eukaryotic cells, a method useful for modeling of mitochondrial genetic disorders and developing novel therapeutic modalities. Here, we report that A-to-G-editing TALEDs but not C-to-T-editing DdCBEs induce tens of thousands of transcriptome-wide off-target edits in human cells. To avoid these unwanted RNA edits, we engineered the substrate-binding site in TadA8e, the deoxy-adenine deaminase in TALEDs, and created TALED variants with fine-tuned deaminase activity. Our engineered TALED variants not only reduced RNA off-target edits by >99% but also minimized off-target mtDNA mutations and bystander edits at a target site. Unlike wild-type versions, our TALED variants were not cytotoxic and did not cause developmental arrest of mouse embryos. As a result, we obtained mice with pathogenic mtDNA mutations, associated with Leigh syndrome, which showed reduced heart rates.


Assuntos
DNA Mitocondrial , Efetores Semelhantes a Ativadores de Transcrição , Animais , Humanos , Camundongos , Adenina , Citosina , DNA Mitocondrial/genética , Edição de Genes , RNA , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Engenharia de Proteínas
2.
Nature ; 620(7976): 1025-1030, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532928

RESUMO

HIV-1 remains a global health crisis1, highlighting the need to identify new targets for therapies. Here, given the disproportionate HIV-1 burden and marked human genome diversity in Africa2, we assessed the genetic determinants of control of set-point viral load in 3,879 people of African ancestries living with HIV-1 participating in the international collaboration for the genomics of HIV3. We identify a previously undescribed association signal on chromosome 1 where the peak variant associates with an approximately 0.3 log10-transformed copies per ml lower set-point viral load per minor allele copy and is specific to populations of African descent. The top associated variant is intergenic and lies between a long intergenic non-coding RNA (LINC00624) and the coding gene CHD1L, which encodes a helicase that is involved in DNA repair4. Infection assays in iPS cell-derived macrophages and other immortalized cell lines showed increased HIV-1 replication in CHD1L-knockdown and CHD1L-knockout cells. We provide evidence from population genetic studies that Africa-specific genetic variation near CHD1L associates with HIV replication in vivo. Although experimental studies suggest that CHD1L is able to limit HIV infection in some cell types in vitro, further investigation is required to understand the mechanisms underlying our observations, including any potential indirect effects of CHD1L on HIV spread in vivo that our cell-based assays cannot recapitulate.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA , Variação Genética , Infecções por HIV , HIV-1 , Carga Viral , Humanos , Linhagem Celular , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Infecções por HIV/genética , HIV-1/crescimento & desenvolvimento , HIV-1/fisiologia , Carga Viral/genética , África , Cromossomos Humanos Par 1/genética , Alelos , RNA Longo não Codificante/genética , Replicação Viral
3.
Cell ; 153(4): 797-811, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23663779

RESUMO

All metazoan guts are subjected to immunologically unique conditions in which an efficient antimicrobial system operates to eliminate pathogens while tolerating symbiotic commensal microbiota. However, the molecular mechanisms controlling this process are only partially understood. Here, we show that bacterial-derived uracil acts as a ligand for dual oxidase (DUOX)-dependent reactive oxygen species generation in Drosophila gut and that the uracil production in bacteria causes inflammation in the gut. The acute and controlled uracil-induced immune response is required for efficient elimination of bacteria, intestinal cell repair, and host survival during infection of nonresident species. Among resident gut microbiota, uracil production is absent in symbionts, allowing harmonious colonization without DUOX activation, whereas uracil release from opportunistic pathobionts provokes chronic inflammation. These results reveal that bacteria with distinct abilities to activate uracil-induced gut inflammation, in terms of intensity and duration, act as critical factors that determine homeostasis or pathogenesis in gut-microbe interactions.


Assuntos
Drosophila/imunologia , Drosophila/microbiologia , Imunidade nas Mucosas , Pectobacterium carotovorum/fisiologia , Simbiose , Uracila/metabolismo , Animais , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Homeostase , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo
4.
Nature ; 601(7891): 69-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34987213

RESUMO

The 660-kilometre seismic discontinuity is the boundary between the Earth's lower mantle and transition zone and is commonly interpreted as being due to the dissociation of ringwoodite to bridgmanite plus ferropericlase (post-spinel transition)1-3. A distinct feature of the 660-kilometre discontinuity is its depression to 750 kilometres beneath subduction zones4-10. However, in situ X-ray diffraction studies using multi-anvil techniques have demonstrated negative but gentle Clapeyron slopes (that is,  the ratio between pressure and temperature changes) of the post-spinel transition that do not allow a significant depression11-13. On the other hand, conventional high-pressure experiments face difficulties in accurate phase identification due to inevitable pressure changes during heating and the persistent presence of metastable phases1,3. Here we determine the post-spinel and akimotoite-bridgmanite transition boundaries by multi-anvil experiments using in situ X-ray diffraction, with the boundaries strictly based on the definition of phase equilibrium. The post-spinel boundary has almost no temperature dependence, whereas the akimotoite-bridgmanite transition has a very steep negative boundary slope at temperatures lower than ambient mantle geotherms. The large depressions of the 660-kilometre discontinuity in cold subduction zones are thus interpreted as the akimotoite-bridgmanite transition. The steep negative boundary of the akimotoite-bridgmanite transition will cause slab stagnation (a stalling of the slab's descent) due to significant upward buoyancy14,15.

5.
Plant Cell ; 36(3): 746-763, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38041863

RESUMO

N 6-methyladenosine (m6A) is a common epitranscriptional mRNA modification in eukaryotes. Thirteen putative m6A readers, mostly annotated as EVOLUTIONARILY CONSERVED C-TERMINAL REGION (ECT) proteins, have been identified in Arabidopsis (Arabidopsis thaliana), but few have been characterized. Here, we show that the Arabidopsis m6A reader ECT1 modulates salicylic acid (SA)-mediated plant stress responses. ECT1 undergoes liquid-liquid phase separation in vitro, and its N-terminal prion-like domain is critical for forming in vivo cytosolic biomolecular condensates in response to SA or bacterial pathogens. Fluorescence-activated particle sorting coupled with quantitative PCR analyses unveiled that ECT1 sequesters SA-induced m6A modification-prone mRNAs through its conserved aromatic cage to facilitate their decay in cytosolic condensates, thereby dampening SA-mediated stress responses. Consistent with this finding, ECT1 overexpression promotes bacterial multiplication in plants. Collectively, our findings unequivocally link ECT1-associated cytosolic condensates to SA-dependent plant stress responses, advancing the current understanding of m6A readers and the SA signaling network.


Assuntos
Adenina/análogos & derivados , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Salicílico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Nature ; 593(7860): 570-574, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953396

RESUMO

A balanced intake of macronutrients-protein, carbohydrate and fat-is essential for the well-being of organisms. An adequate calorific intake but with insufficient protein consumption can lead to several ailments, including kwashiorkor1. Taste receptors (T1R1-T1R3)2 can detect amino acids in the environment, and cellular sensors (Gcn2 and Tor)3 monitor the levels of amino acids in the cell. When deprived of dietary protein, animals select a food source that contains a greater proportion of protein or essential amino acids (EAAs)4. This suggests that food selection is geared towards achieving the target amount of a particular macronutrient with assistance of the EAA-specific hunger-driven response, which is poorly understood. Here we show in Drosophila that a microbiome-gut-brain axis detects a deficit of EAAs and stimulates a compensatory appetite for EAAs. We found that the neuropeptide CNMamide (CNMa)5 was highly induced in enterocytes of the anterior midgut during protein deprivation. Silencing of the CNMa-CNMa receptor axis blocked the EAA-specific hunger-driven response in deprived flies. Furthermore, gnotobiotic flies bearing an EAA-producing symbiotic microbiome exhibited a reduced appetite for EAAs. By contrast, gnotobiotic flies with a mutant microbiome that did not produce leucine or other EAAs showed higher expression of CNMa and a greater compensatory appetite for EAAs. We propose that gut enterocytes sense the levels of diet- and microbiome-derived EAAs and communicate the EAA-deprived condition to the brain through CNMa.


Assuntos
Aminoácidos Essenciais/administração & dosagem , Eixo Encéfalo-Intestino , Drosophila/fisiologia , Preferências Alimentares , Microbioma Gastrointestinal , Aminoácidos Essenciais/deficiência , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Geneticamente Modificados , Apetite , Enterócitos , Feminino , Vida Livre de Germes , Fome , Leucina , Simbiose
7.
Proc Natl Acad Sci U S A ; 121(33): e2402129121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39106309

RESUMO

We study the coupled charge density wave (CDW) and insulator-to-metal transitions in the 2D quantum material 1T-TaS2. By applying in situ cryogenic 4D scanning transmission electron microscopy with in situ electrical resistance measurements, we directly visualize the CDW transition and establish that the transition is mediated by basal dislocations (stacking solitons). We find that dislocations can both nucleate and pin the transition and locally alter the transition temperature Tc by nearly ~75 K. This finding was enabled by the application of unsupervised machine learning to cluster five-dimensional, terabyte scale datasets, which demonstrate a one-to-one correlation between resistance-a global property-and local CDW domain-dislocation dynamics, thereby linking the material microstructure to device properties. This work represents a major step toward defect-engineering of quantum materials, which will become increasingly important as we aim to utilize such materials in real devices.

8.
EMBO J ; 41(14): e109958, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35670129

RESUMO

The number of meiotic crossovers is tightly controlled and most depend on pro-crossover ZMM proteins, such as the E3 ligase HEI10. Despite the importance of HEI10 dosage for crossover formation, how HEI10 transcription is controlled remains unexplored. In a forward genetic screen using a fluorescent crossover reporter in Arabidopsis thaliana, we identify heat shock factor binding protein (HSBP) as a repressor of HEI10 transcription and crossover numbers. Using genome-wide crossover mapping and cytogenetics, we show that hsbp mutations or meiotic HSBP knockdowns increase ZMM-dependent crossovers toward the telomeres, mirroring the effects of HEI10 overexpression. Through RNA sequencing, DNA methylome, and chromatin immunoprecipitation analysis, we reveal that HSBP is required to repress HEI10 transcription by binding with heat shock factors (HSFs) at the HEI10 promoter and maintaining DNA methylation over the HEI10 5' untranslated region. Our findings provide insights into how the temperature response regulator HSBP restricts meiotic HEI10 transcription and crossover number by attenuating HSF activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Troca Genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Meiose/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
PLoS Pathog ; 20(7): e1012295, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39052544

RESUMO

The emergence of drug-resistant Mycobacterium tuberculosis (M.tb) has led to the development of novel anti-tuberculosis (anti-TB) drugs. Common methods for testing the efficacy of new drugs, including two-dimensional cell culture models or animal models, have several limitations. Therefore, an appropriate model representative of the human organism is required. Here, we developed an M.tb infection model using human lung organoids (hLOs) and demonstrated that M.tb H37Rv can infect lung epithelial cells and human macrophages (hMφs) in hLOs. This novel M.tb infection model can be cultured long-term and split several times while maintaining a similar number of M.tb H37Rv inside the hLOs. Anti-TB drugs reduced the intracellular survival of M.tb in hLOs. Notably, M.tb growth in hLOs was effectively suppressed at each passage by rifampicin and bedaquiline. Furthermore, a reduction in inflammatory cytokine production and intracellular survival of M.tb were observed upon knockdown of MFN2 and HERPUD1 (host-directed therapeutic targets for TB) in our M.tb H37Rv-infected hLO model. Thus, the incorporation of hMφs and M.tb into hLOs provides a powerful strategy for generating an M.tb infection model. This model can effectively reflect host-pathogen interactions and be utilized to test the efficacy of anti-TB drugs and host-directed therapies.


Assuntos
Antituberculosos , Pulmão , Mycobacterium tuberculosis , Organoides , Humanos , Organoides/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/patologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Macrófagos/microbiologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Células Epiteliais/microbiologia
10.
PLoS Pathog ; 20(9): e1012083, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39259751

RESUMO

The persistence of HIV-1 in long-lived latent reservoirs during suppressive antiretroviral therapy (ART) remains one of the principal barriers to a functional cure. Blocks to transcriptional elongation play a central role in maintaining the latent state, and several latency reversal strategies focus on the release of positive transcription elongation factor b (P-TEFb) from sequestration by negative regulatory complexes, such as the 7SK complex and BRD4. Another major cellular reservoir of P-TEFb is in Super Elongation Complexes (SECs), which play broad regulatory roles in host gene expression. Still, it is unknown if the release of P-TEFb from SECs is a viable latency reversal strategy. Here, we demonstrate that the SEC is not required for HIV-1 replication in primary CD4+ T cells and that a small molecular inhibitor of the P-TEFb/SEC interaction (termed KL-2) increases viral transcription. KL-2 acts synergistically with other latency reversing agents (LRAs) to reactivate viral transcription in several cell line models of latency in a manner that is, at least in part, dependent on the viral Tat protein. Finally, we demonstrate that KL-2 enhances viral reactivation in peripheral blood mononuclear cells (PBMCs) from people living with HIV (PLWH) on suppressive ART, most notably in combination with inhibitor of apoptosis protein antagonists (IAPi). Taken together, these results suggest that the release of P-TEFb from cellular SECs may be a novel route for HIV-1 latency reactivation.

11.
Plant Cell ; 35(6): 1868-1887, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36945744

RESUMO

Small RNAs (sRNAs) associate with ARGONAUTE (AGO) proteins forming effector complexes with key roles in gene regulation and defense responses against molecular parasites. In multicellular eukaryotes, extensive duplication and diversification of RNA interference (RNAi) components have resulted in intricate pathways for epigenetic control of gene expression. The unicellular alga Chlamydomonas reinhardtii also has a complex RNAi machinery, including 3 AGOs and 3 DICER-like proteins. However, little is known about the biogenesis and function of most endogenous sRNAs. We demonstrate here that Chlamydomonas contains uncommonly long (>26 nt) sRNAs that associate preferentially with AGO1. Somewhat reminiscent of animal PIWI-interacting RNAs, these >26 nt sRNAs are derived from moderately repetitive genomic clusters and their biogenesis is DICER-independent. Interestingly, the sequences generating these >26-nt sRNAs have been conserved and amplified in several Chlamydomonas species. Moreover, expression of these longer sRNAs increases substantially under nitrogen or sulfur deprivation, concurrently with the downregulation of predicted target transcripts. We hypothesize that the transposon-like sequences from which >26-nt sRNAs are produced might have been ancestrally targeted for silencing by the RNAi machinery but, during evolution, certain sRNAs might have fortuitously acquired endogenous target genes and become integrated into gene regulatory networks.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Animais , Chlamydomonas/genética , Chlamydomonas/metabolismo , Interferência de RNA , Regulação da Expressão Gênica , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo
12.
Proc Natl Acad Sci U S A ; 120(36): e2303758120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639582

RESUMO

In Arabidopsis thaliana, brassinosteroid (BR) signaling and stomatal development are connected through the SHAGGY/GSK3-like kinase BR INSENSITIVE2 (BIN2). BIN2 is a key negative regulator of BR signaling but it plays a dual role in stomatal development. BIN2 promotes or restricts stomatal asymmetric cell division (ACD) depending on its subcellular localization, which is regulated by the stomatal lineage-specific scaffold protein POLAR. BRs inactivate BIN2, but how they govern stomatal development remains unclear. Mapping the single-cell transcriptome of stomatal lineages after triggering BR signaling with either exogenous BRs or the specific BIN2 inhibitor, bikinin, revealed that the two modes of BR signaling activation generate spatiotemporally distinct transcriptional responses. We established that BIN2 is always sensitive to the inhibitor but, when in a complex with POLAR and its closest homolog POLAR-LIKE1, it becomes protected from BR-mediated inactivation. Subsequently, BR signaling in ACD precursors is attenuated, while it remains active in epidermal cells devoid of scaffolds and undergoing differentiation. Our study demonstrates how scaffold proteins contribute to cellular signal specificity of hormonal responses in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassinosteroides , Divisão Celular Assimétrica , Quinase 3 da Glicogênio Sintase , Transdução de Sinais , Diferenciação Celular , Arabidopsis/genética , Proteínas Quinases/genética , Proteínas de Arabidopsis/genética
13.
Proc Natl Acad Sci U S A ; 120(4): e2208425120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669119

RESUMO

Recurrent spillovers of α- and ß-coronaviruses (CoV) such as severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome-CoV, SARS-CoV-2, and possibly human CoV have caused serious morbidity and mortality worldwide. In this study, six receptor-binding domains (RBDs) derived from α- and ß-CoV that are considered to have originated from animals and cross-infected humans were linked to a heterotrimeric scaffold, proliferating cell nuclear antigen (PCNA) subunits, PCNA1, PCNA2, and PCNA3. They assemble to create a stable mosaic multivalent nanoparticle, 6RBD-np, displaying a ring-shaped disk with six protruding antigens, like jewels in a crown. Prime-boost immunizations with 6RBD-np in mice induced significantly high Ab titers against RBD antigens derived from α- and ß-CoV and increased interferon (IFN-γ) production, with full protection against the SARS-CoV-2 wild type and Delta challenges. The mosaic 6RBD-np has the potential to induce intergenus cross-reactivity and to be developed as a pan-CoV vaccine against future CoV spillovers.


Assuntos
COVID-19 , Nanopartículas , Humanos , Animais , Camundongos , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
14.
Am J Hum Genet ; 109(12): 2210-2229, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423637

RESUMO

The most recent genome-wide association study (GWAS) of cutaneous melanoma identified 54 risk-associated loci, but functional variants and their target genes for most have not been established. Here, we performed massively parallel reporter assays (MPRAs) by using malignant melanoma and normal melanocyte cells and further integrated multi-layer annotation to systematically prioritize functional variants and susceptibility genes from these GWAS loci. Of 1,992 risk-associated variants tested in MPRAs, we identified 285 from 42 loci (78% of the known loci) displaying significant allelic transcriptional activities in either cell type (FDR < 1%). We further characterized MPRA-significant variants by motif prediction, epigenomic annotation, and statistical/functional fine-mapping to create integrative variant scores, which prioritized one to six plausible candidate variants per locus for the 42 loci and nominated a single variant for 43% of these loci. Overlaying the MPRA-significant variants with genome-wide significant expression or methylation quantitative trait loci (eQTLs or meQTLs, respectively) from melanocytes or melanomas identified candidate susceptibility genes for 60% of variants (172 of 285 variants). CRISPRi of top-scoring variants validated their cis-regulatory effect on the eQTL target genes, MAFF (22q13.1) and GPRC5A (12p13.1). Finally, we identified 36 melanoma-specific and 45 melanocyte-specific MPRA-significant variants, a subset of which are linked to cell-type-specific target genes. Analyses of transcription factor availability in MPRA datasets and variant-transcription-factor interaction in eQTL datasets highlighted the roles of transcription factors in cell-type-specific variant functionality. In conclusion, MPRAs along with variant scoring effectively prioritized plausible candidates for most melanoma GWAS loci and highlighted cellular contexts where the susceptibility variants are functional.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Estudo de Associação Genômica Ampla , Bioensaio , Fatores de Transcrição , Receptores Acoplados a Proteínas G , Melanoma Maligno Cutâneo
15.
Genome Res ; 32(11-12): 2003-2014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36351769

RESUMO

Aging is associated with changes in a variety of biological processes at the transcriptomic level, including gene expression. Two types of aging occur during a lifetime: chronological and physiological aging. However, dissecting the difference between chronological and physiological ages at the transcriptomic level has been a challenge because of its complexity. We analyzed the transcriptomic features associated with physiological and chronological aging using Caenorhabditis elegans as a model. Many structural and functional transcript elements, such as noncoding RNAs and intron-derived transcripts, were up-regulated with chronological aging. In contrast, mRNAs with many biological functions, including RNA processing, were down-regulated with physiological aging. We also identified an age-dependent increase in the usage of distal 3' splice sites in mRNA transcripts as a biomarker of physiological aging. Our study provides crucial information for dissecting chronological and physiological aging at the transcriptomic level.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Perfilação da Expressão Gênica , Proteínas de Caenorhabditis elegans/genética , Transcriptoma
16.
Nature ; 570(7762): 484-490, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31217587

RESUMO

For centuries, the scientific discovery process has been based on systematic human observation and analysis of natural phenomena1. Today, however, automated instrumentation and large-scale data acquisition are generating datasets of such large volume and complexity as to defy conventional scientific methodology. Radically different scientific approaches are needed, and machine learning (ML) shows great promise for research fields such as materials science2-5. Given the success of ML in the analysis of synthetic data representing electronic quantum matter (EQM)6-16, the next challenge is to apply this approach to experimental data-for example, to the arrays of complex electronic-structure images17 obtained from atomic-scale visualization of EQM. Here we report the development and training of a suite of artificial neural networks (ANNs) designed to recognize different types of order hidden in such EQM image arrays. These ANNs are used to analyse an archive of experimentally derived EQM image arrays from carrier-doped copper oxide Mott insulators. In these noisy and complex data, the ANNs discover the existence of a lattice-commensurate, four-unit-cell periodic, translational-symmetry-breaking EQM state. Further, the ANNs determine that this state is unidirectional, revealing a coincident nematic EQM state. Strong-coupling theories of electronic liquid crystals18,19 are consistent with these observations.

17.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193959

RESUMO

In metazoan organisms, circadian (∼24 h) rhythms are regulated by pacemaker neurons organized in a master-slave hierarchy. Although it is widely accepted that master pacemakers and slave oscillators generate rhythms via an identical negative feedback loop of transcription factor CLOCK (CLK) and repressor PERIOD (PER), their different roles imply heterogeneity in their molecular clockworks. Indeed, in Drosophila, defective binding between CLK and PER disrupts molecular rhythms in the master pacemakers, small ventral lateral neurons (sLNvs), but not in the slave oscillator, posterior dorsal neuron 1s (DN1ps). Here, we develop a systematic and expandable approach that unbiasedly searches the source of the heterogeneity in molecular clockworks from time-series data. In combination with in vivo experiments, we find that sLNvs exhibit higher synthesis and turnover of PER and lower CLK levels than DN1ps. Importantly, light shift analysis reveals that due to such a distinct molecular clockwork, sLNvs can obtain paradoxical characteristics as the master pacemaker, generating strong rhythms that are also flexibly adjustable to environmental changes. Our results identify the different characteristics of molecular clockworks of pacemaker neurons that underlie hierarchical multi-oscillator structure to ensure the rhythmic fitness of the organism.


Assuntos
Proteínas CLOCK/genética , Relógios Circadianos/fisiologia , Neurônios/metabolismo , Animais , Relógios Biológicos/fisiologia , Encéfalo/fisiologia , Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Proteínas Circadianas Period/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(24): e2109665119, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35679347

RESUMO

The information content of crystalline materials becomes astronomical when collective electronic behavior and their fluctuations are taken into account. In the past decade, improvements in source brightness and detector technology at modern X-ray facilities have allowed a dramatically increased fraction of this information to be captured. Now, the primary challenge is to understand and discover scientific principles from big datasets when a comprehensive analysis is beyond human reach. We report the development of an unsupervised machine learning approach, X-ray diffraction (XRD) temperature clustering (X-TEC), that can automatically extract charge density wave order parameters and detect intraunit cell ordering and its fluctuations from a series of high-volume X-ray diffraction measurements taken at multiple temperatures. We benchmark X-TEC with diffraction data on a quasi-skutterudite family of materials, (CaxSr[Formula: see text])3Rh4Sn13, where a quantum critical point is observed as a function of Ca concentration. We apply X-TEC to XRD data on the pyrochlore metal, Cd2Re2O7, to investigate its two much-debated structural phase transitions and uncover the Goldstone mode accompanying them. We demonstrate how unprecedented atomic-scale knowledge can be gained when human researchers connect the X-TEC results to physical principles. Specifically, we extract from the X-TEC-revealed selection rules that the Cd and Re displacements are approximately equal in amplitude but out of phase. This discovery reveals a previously unknown involvement of [Formula: see text] Re, supporting the idea of an electronic origin to the structural order. Our approach can radically transform XRD experiments by allowing in operando data analysis and enabling researchers to refine experiments by discovering interesting regions of phase space on the fly.

19.
Nano Lett ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283048

RESUMO

Although extensive research on the mechanisms of photoconductivity enhancement in plasmonic Schottky structures has been conducted, the photoconductive interplay between hot electrons and trapping states remains elusive. In this study, we explored the photoconductive relationship between plasmonic hot-carriers and defect sites present in plasmonic architectures consisting of N-face n-GaN and Au nanoprisms. Our experimental results clearly verified that the plasmonic hot-electrons generated by interband transitions preferentially occupied deep trap levels in n-GaN, thereby considerably enhancing the photoconductivity through the combination of photogating and photovoltaic effects. Our quantitative evaluation demonstrated that a mere 63% increase in hot-electron trapping leads to a 1.7-fold increased photocurrent under localized surface plasmon resonance (LSPR) excitation compared to the figure of photocurrent under non-LSPR stimulus. Our findings provide novel insights into the mechanisms of photoconductive enhancement for advanced plasmonic applications.

20.
Gut ; 73(3): 533-540, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-37907259

RESUMO

OBJECTIVE: We explored clinical implications of the new definition of metabolic dysfunction-associated steatotic liver disease (MASLD) by assessing its prevalence and associated cardiovascular disease (CVD) risk. DESIGN: From nationwide health screening data, we identified 9 775 066 adults aged 20-79 who underwent health examination in 2009. Participants were categorised into four mutually exclusive groups: (1) MASLD; (2) MASLD with increased alcohol intake (MetALD); (3) MASLD with other combined aetiology (the three collectively referred to as MASLD/related steatotic liver disease (SLD)); and (4) no MASLD/related SLD. SLD was determined by fatty liver index ≥30. The primary outcome was CVD event, defined as a composite of myocardial infarction, ischaemic stroke, heart failure or cardiovascular death. RESULTS: The prevalence of MASLD, MetALD and MASLD with other combined aetiology was 27.5%, 4.4% and 1.5%, respectively. A total of 8 808 494 participants without prior CVD were followed up for a median of 12.3 years, during which 272 863 CVD events occurred. The cumulative incidence and multivariable-adjusted risk of CVD were higher in participants with MASLD/related SLD than in those without (HR 1.38 (95% CI 1.37 to 1.39)). Multivariable-adjusted HR (95% CI) of CVD events was 1.39 (1.38 to 1.40) for MASLD, 1.28 (1.26 to 1.30) for MetALD and 1.30 (1.26 to 1.34) for MASLD with other combined aetiology compared to the absence of any of these conditions. CVD risk was also higher in participants with metabolic dysfunction-associated fatty liver disease or non-alcoholic fatty liver disease than in those without the respective condition. CONCLUSION: Over one-third of Korean adults have MASLD/related SLD and bear a high CVD risk.


Assuntos
Isquemia Encefálica , Doenças Cardiovasculares , Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Acidente Vascular Cerebral , Adulto , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Metabólicas/complicações , Doenças Metabólicas/epidemiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA