RESUMO
MDGA (MAM domain containing glycosylphosphatidylinositol anchor) family proteins were previously identified as synaptic suppressive factors. However, various genetic manipulations have yielded often irreconcilable results, precluding precise evaluation of MDGA functions. Here, we found that, in cultured hippocampal neurons, conditional deletion of MDGA1 and MDGA2 causes specific alterations in synapse numbers, basal synaptic transmission, and synaptic strength at GABAergic and glutamatergic synapses, respectively. Moreover, MDGA2 deletion enhanced both N-methyl-D-aspartate (NMDA) receptor- and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated postsynaptic responses. Strikingly, ablation of both MDGA1 and MDGA2 abolished the effect of deleting individual MDGAs that is abrogated by chronic blockade of synaptic activity. Molecular replacement experiments further showed that MDGA1 requires the meprin/A5 protein/PTPmu (MAM) domain, whereas MDGA2 acts via neuroligin-dependent and/or MAM domain-dependent pathways to regulate distinct postsynaptic properties. Together, our data demonstrate that MDGA paralogs act as unique negative regulators of activity-dependent postsynaptic organization at distinct synapse types, and cooperatively contribute to adjustment of excitation-inhibition balance.
Assuntos
Hipocampo , Sinapses , Transmissão Sináptica , Animais , Sinapses/metabolismo , Camundongos , Hipocampo/metabolismo , Hipocampo/citologia , Transmissão Sináptica/fisiologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Camundongos Knockout , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células CultivadasRESUMO
α-Neurexins are essential and highly expressed presynaptic cell-adhesion molecules that are frequently linked to neuropsychiatric and neurodevelopmental disorders. Despite their importance, how the elaborate extracellular sequences of α-neurexins contribute to synapse function is poorly understood. We recently characterized the presynaptic gain-of-function phenotype caused by a missense mutation in an evolutionarily conserved extracellular sequence of neurexin-3α (A687T) that we identified in a patient diagnosed with profound intellectual disability and epilepsy. The striking A687T gain-of-function mutation on neurexin-3α prompted us to systematically test using mutants whether the presynaptic gain-of-function phenotype is a consequence of the addition of side-chain bulk (i.e., A687V) or polar/hydrophilic properties (i.e., A687S). We used multidisciplinary approaches in mixed-sex primary hippocampal cultures to assess the impact of the neurexin-3αA687 residue on synapse morphology, function and ligand binding. Unexpectedly, neither A687V nor A687S recapitulated the neurexin-3α A687T phenotype. Instead, distinct from A687T, molecular replacement with A687S significantly enhanced postsynaptic properties exclusively at excitatory synapses and selectively increased binding to neuroligin-1 and neuroligin-3 without changing binding to neuroligin-2 or LRRTM2. Importantly, we provide the first experimental evidence supporting the notion that the position A687 of neurexin-3α and the N-terminal sequences of neuroligins may contribute to the stability of α-neurexin-neuroligin-1 trans-synaptic interactions and that these interactions may specifically regulate the postsynaptic strength of excitatory synapses.
Assuntos
Moléculas de Adesão Celular Neuronais , Proteínas do Tecido Nervoso , Sinapses , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Animais , Sinapses/metabolismo , Masculino , Feminino , Hipocampo/metabolismo , Hipocampo/citologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ligação Proteica , Relação Estrutura-Atividade , Ratos , Mutação de Sentido Incorreto , Células Cultivadas , Mutação , Camundongos , NeuroliginasRESUMO
Balanced synaptic inhibition, controlled by multiple synaptic adhesion proteins, is critical for proper brain function. MDGA1 (meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu [MAM] domain-containing glycosylphosphatidylinositol anchor protein 1) suppresses synaptic inhibition in mammalian neurons, yet the molecular mechanisms underlying MDGA1-mediated negative regulation of GABAergic synapses remain unresolved. Here, we show that the MDGA1 MAM domain directly interacts with the extension domain of amyloid precursor protein (APP). Strikingly, MDGA1-mediated synaptic disinhibition requires the MDGA1 MAM domain and is prominent at distal dendrites of hippocampal CA1 pyramidal neurons. Down-regulation of APP in presynaptic GABAergic interneurons specifically suppressed GABAergic, but not glutamatergic, synaptic transmission strength and inputs onto both the somatic and dendritic compartments of hippocampal CA1 pyramidal neurons. Moreover, APP deletion manifested differential effects in somatostatin- and parvalbumin-positive interneurons in the hippocampal CA1, resulting in distinct alterations in inhibitory synapse numbers, transmission, and excitability. The infusion of MDGA1 MAM protein mimicked postsynaptic MDGA1 gain-of-function phenotypes that involve the presence of presynaptic APP. The overexpression of MDGA1 wild type or MAM, but not MAM-deleted MDGA1, in the hippocampal CA1 impaired novel object-recognition memory in mice. Thus, our results establish unique roles of APP-MDGA1 complexes in hippocampal neural circuits, providing unprecedented insight into trans-synaptic mechanisms underlying differential tuning of neuronal compartment-specific synaptic inhibition.
Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Moléculas de Adesão de Célula Nervosa/genética , Inibição Neural , Sinapses/metabolismo , Precursor de Proteína beta-Amiloide/genética , Região CA1 Hipocampal , Proteínas de Transporte , Dendritos/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios , Modelos Biológicos , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/metabolismo , Inibição Neural/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Células Piramidais/metabolismo , Receptores de GABA-B/metabolismo , Transmissão SinápticaRESUMO
Neurexins (Nrxns) and LAR-RPTPs (leukocyte common antigen-related protein tyrosine phosphatases) are presynaptic adhesion proteins responsible for organizing presynaptic machineries through interactions with nonoverlapping extracellular ligands. Here, we report that two members of the LAR-RPTP family, PTPσ and PTPδ, are required for the presynaptogenic activity of Nrxns. Intriguingly, Nrxn1 and PTPσ require distinct sets of intracellular proteins for the assembly of specific presynaptic terminals. In addition, Nrxn1α showed robust heparan sulfate (HS)-dependent, high-affinity interactions with Ig domains of PTPσ that were regulated by the splicing status of PTPσ. Furthermore, Nrxn1α WT, but not a Nrxn1α mutant lacking HS moieties (Nrxn1α ΔHS), inhibited postsynapse-inducing activity of PTPσ at excitatory, but not inhibitory, synapses. Similarly, cis expression of Nrxn1α WT, but not Nrxn1α ΔHS, suppressed the PTPσ-mediated maintenance of excitatory postsynaptic specializations in mouse cultured hippocampal neurons. Lastly, genetics analyses using male or female Drosophila Dlar and Dnrx mutant larvae identified epistatic interactions that control synapse formation and synaptic transmission at neuromuscular junctions. Our results suggest a novel synaptogenesis model whereby different presynaptic adhesion molecules combine with distinct regulatory codes to orchestrate specific synaptic adhesion pathways.SIGNIFICANCE STATEMENT We provide evidence supporting the physical interactions of neurexins with leukocyte common-antigen related receptor tyrosine phosphatases (LAR-RPTPs). The availability of heparan sulfates and alternative splicing of LAR-RPTPs regulate the binding affinity of these interactions. A set of intracellular presynaptic proteins is involved in common for Nrxn- and LAR-RPTP-mediated presynaptic assembly. PTPσ triggers glutamatergic and GABAergic postsynaptic differentiation in an alternative splicing-dependent manner, whereas Nrxn1α induces GABAergic postsynaptic differentiation in an alternative splicing-independent manner. Strikingly, Nrxn1α inhibits the glutamatergic postsynapse-inducing activity of PTPσ, suggesting that PTPσ and Nrxn1α might control recruitment of a different pool of postsynaptic machinery. Drosophila orthologs of Nrxns and LAR-RPTPs mediate epistatic interactions in controlling synapse structure and strength at neuromuscular junctions, underscoring the physiological significance in vivo.
Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Antígenos Comuns de Leucócito/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Potenciais Pós-Sinápticos Excitadores/fisiologia , Espaço Extracelular/metabolismo , Feminino , Células HEK293 , Humanos , Larva , Masculino , Camundongos , Conformação Molecular , Moléculas de Adesão de Célula Nervosa/metabolismo , Gravidez , Terminações Pré-Sinápticas/metabolismo , Ratos , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Transmissão Sináptica/fisiologiaRESUMO
Calsyntenin-3 (Clstn3) is a postsynaptic adhesion molecule that induces presynaptic differentiation via presynaptic neurexins (Nrxns), but whether Nrxns directly bind to Clstn3 has been a matter of debate. Here, using LC-MS/MS-based protein analysis, confocal microscopy, RNAscope assays, and electrophysiological recordings, we show that ß-Nrxns directly interact via their LNS domain with Clstn3 and Clstn3 cadherin domains. Expression of splice site 4 (SS4) insert-positive ß-Nrxn variants, but not insert-negative variants, reversed the impaired Clstn3 synaptogenic activity observed in Nrxn-deficient neurons. Consistently, Clstn3 selectively formed complexes with SS4-positive Nrxns in vivo Neuron-specific Clstn3 deletion caused significant reductions in number of excitatory synaptic inputs. Moreover, expression of Clstn3 cadherin domains in CA1 neurons of Clstn3 conditional knockout mice rescued structural deficits in excitatory synapses, especially within the stratum radiatum layer. Collectively, our results suggest that Clstn3 links to SS4-positive Nrxns to induce presynaptic differentiation and orchestrate excitatory synapse development in specific hippocampal neural circuits, including Schaffer collateral afferents.
Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Animais , Caderinas/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Cromatografia Líquida/métodos , Hipocampo/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Proteínas do Tecido Nervoso/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Espectrometria de Massas em Tandem/métodosRESUMO
IQSEC3, a guanine nucleotide exchange factor for ADP-ribosylation factors (ARF-GEFs) is specifically expressed at GABAergic synapses, and its loss increases seizure susceptibility in mice. However, the contribution of microglia to initiation and/or progression of seizures in IQSEC3-deficient mice has not been investigated. In the current study, we show that mice with hippocampal dentate gyrus (DG)-specific IQSEC3 knockdown (KD) exhibit microglial activation and death of DG granule cell. Furthermore, treatment of IQSEC3-KD mice with minocycline, an inhibitor of microglial activation, blocks DG granule neuron cell death and the occurrence of spontaneous seizures without affecting GABAergic synapse deficits or loss of somatostatin. Our results suggest that microglial activation is involved in a subset of IQSEC3-KD-induced epileptogenesis stages, and that its regulation could be an alternative strategy for managing epilepsy.
Assuntos
Microglia , Convulsões , Animais , Giro Denteado , Fatores de Troca do Nucleotídeo Guanina , Hipocampo , Camundongos , Neurônios , SinapsesRESUMO
We propose a novel non-contact optical fiber displacement sensor. It uses a radio frequency (RF) interrogation technique which is based on bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). The displacement is measured from the free spectral range (FSR) which is determined by the dip frequencies of the modulated MZ-EOM transfer function. In experiments, the proposed sensor showed a sensitivity of 456 kHz/mm or 1.043 kHz/V in a measurement range of 7 mm. The displacement resolution of the proposed sensor depends on the linewidth and the power of the optical source. Resolution better than 0.05 µm would be achieved if an optical source which has a linewidth narrower than 1.5 nm and a received power larger than -36 dBm is used. Also, the multiplexing characteristic of the proposed sensor was experimentally validated.
RESUMO
CD10 expression was identified as a contributor to cancer progression in several cancers; however, the exact biological significance and mechanism of CD10 expression remains unclear. In addition, CD10 expression in esophageal squamous cell carcinoma (ESCC) has not been studied. We investigated the relationship between CD10 and Twist1. Furthermore, we examined the effect of CD10 on tumorigenicity using in vivo and in vitro systems as well as establishing the clinical significance of CD10 expression in ESCC using large clinical samples. CD10 expression was upregulated by Twist1 and there was a strong correlation between mRNA and protein expression. Twist1 can specifically upregulate CD10 at the transcriptional level via an interaction with the promoter region of CD10 and the proximal E-box CAGGTG in the CD10 promoter was identified as a binding site for Twist1. CD10 is frequently expressed in ESCC cell lines and silencing CD10 suppresses migration/invasion and anchorage-independent tumor growth of ESCC cells. Knockdown of CD10 inhibits the growth of ESCC xenograft in nude mice, suggesting that CD10 plays a role in enhancing the tumorigenesis of ESCC. From among 153 ESCC samples, 46 (30.0%) showed varying degrees of CD10 expression in cancer cells. In addition, stromal fibroblasts also showed varying amounts of CD10 expression in 92 (60.9%) tumor samples. CD10 overexpression in cancer cells as well as in stromal fibroblasts was an independent poor prognostic factor in both overall survival and disease-free survival. CD10 could be a promising target for the treatment of ESCC.
Assuntos
Carcinoma de Células Escamosas/patologia , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/patologia , Neprilisina/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Idoso , Animais , Apoptose , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Adesão Celular , Imunoprecipitação da Cromatina , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutagênese Sítio-Dirigida , Estadiamento de Neoplasias , Neprilisina/genética , Proteínas Nucleares/genética , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo , Células Estromais/patologia , Taxa de Sobrevida , Células Tumorais Cultivadas , Proteína 1 Relacionada a Twist/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Neuroinflammation impacts the brain and cognitive behavior through microglial activation. In this study, we determined the temporal sequence from microglial activation to synaptic dysfunction and cognitive behavior induced by neuroinflammation in mice. We found that LPS injection activated microglia within a short period, followed by impairments in GABAergic synapses, and that these events led to long-term cognitive impairment. We demonstrated that, 3 days after LPS injection, microglia in the hippocampus were significantly activated due to the LPS-induced inflammation in association with alterations in cellular morphology, microglial density, and expression of phagocytic markers. GABAergic synaptic impairments were detected at 4-6 days after LPS treatment, a time when microglia activity had returned to normal. Consequently, memory impairment persisted for 6 days after injection of LPS. Our results suggest that neuroinflammation induces microglia activation, GABAergic synaptic deficits and prolonged memory impairment over a defined temporal sequence. Our observations provide insight into the temporal sequence of neuroinflammation-associated brain pathologies. Moreover, the specific loss of inhibitory synapses accompanying the impaired inhibitory synaptic transmission provides mechanistic insight that may explain the prolonged cognitive deficit observed in patients with neuroinflammation. Thus, this study provides essential clues regarding early intervention strategies against brain pathologies accompanying neuroinflammation.
Assuntos
Disfunção Cognitiva , Microglia , Camundongos , Animais , Microglia/metabolismo , Lipopolissacarídeos/metabolismo , Doenças Neuroinflamatórias , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Inflamação/patologia , Transtornos da Memória/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Prion diseases are irreversible neurodegenerative disorders caused by the aggregated form of prion protein (PrPSc) derived from the normal form of prion protein (PrPC). Previous studies have reported that shadow of prion protein (Sho) interacts with prion protein (PrP) and accelerates the conversion of PrPC to PrPSc. In addition, genetic polymorphisms of the shadow of the prion protein gene (SPRN) are related to the vulnerability of prion diseases in various hosts. However, to date, polymorphisms and genetic features of the SPRN gene have not been investigated in chickens, which are prion disease-resistant animals. We investigated genetic polymorphisms of the SPRN gene in 2 breeds of chickens, i.e., Dekalb White and Ross, using amplicon sequencing. We analyzed genotype, allele and haplotype frequencies and linkage disequilibrium (LD) among the genetic polymorphisms. In addition, we compared the amino acid sequences of Sho among several prion-related species to identify the unique genetic features of chicken Sho using ClustalW. Furthermore, we evaluated the N-terminal signal peptide and glycosylphosphatidylinositol (GPI)-anchor using SignalP and PredGPI, respectively. Finally, we compared the number of SPRN polymorphisms between prion disease-resistant and prion disease-susceptible animals. We identified 7 novel single nucleotide polymorphisms (SNPs), including 1 synonymous SNP in the open reading frame (ORF) of the chicken SPRN gene. We also found significantly different genotypes, allele frequencies and haplotypes between the 2 chicken breeds. In addition, we found that the interaction regions between Sho and PrP and the NXT glycosylation motif were conserved among all species. Notably, sequence similarity was extremely low in the N-terminal and C-terminal regions between mammals and chickens. Furthermore, we found that chicken Sho was the longest N-terminal signal peptide, and the amino acids of the cutting site of chicken are different from those of mammals. Last, unlike other species investigated, omega-site and signal sequences of the GPI-anchor were not found in chickens. To the best of our knowledge, this is the first report of genetic polymorphisms of the SPRN gene in chickens.
RESUMO
Prion diseases are fatal infectious neurodegenerative disorders that are induced by misfolded prion protein (PrPSc). Previous studies have reported that the shadow of prion protein (Sho) encoded by the shadow of prion protein gene (SPRN) plays a critical role in stimulating the conversion process of normal PrP (PrPC) into PrPSc, and genetic polymorphisms of the SPRN gene are significantly related to susceptibility to prion diseases. Recent studies have reported that dogs show prion resistance, and there have been several attempts to identify resistance factors to prion diseases in dogs. However, there has been no study of the canine SPRN gene thus far. We investigated genetic polymorphisms of the canine SPRN gene in 201 dogs using amplicon sequencing and compared the number of SPRN polymorphisms among prion-related species. In addition, we performed multiple sequence alignments of the amino acid sequences of Sho among prion-related species by ClustalW and analyzed the 3D structure of Sho using AlphaFold. Furthermore, we assessed the protein-protein interaction of canine PrP with canine Sho carrying wild-type and mutant alleles using HawkDock. We found four novel insertion/deletion polymorphisms of the SPRN gene in 201 dogs and identified a significant difference in the number of SPRN polymorphisms between prion-susceptible and prion-resistant animals. In addition, Sho has two α-helixes linked with the coil. Furthermore, we found different binding complexes and binding free energies between canine Sho and PrP according to SPRN polymorphisms. To the best of our knowledge, this is the first report of canine SPRN polymorphisms.
RESUMO
Prion diseases are transmissible spongiform encephalopathies (TSEs) caused by pathogenic prion protein (PrPSc) originating from normal prion protein (PrPC) and have been reported in several types of livestock and pets. Recent studies have reported that the shadow of prion protein (Sho) encoded by the shadow of prion protein gene (SPRN) interacts with prion protein (PrP) and accelerates prion diseases. In addition, genetic polymorphisms in the SPRN gene are related to susceptibility to prion diseases. However, genetic polymorphisms in the feline SPRN gene and structural characteristics of the Sho have not been investigated in cats, a major host of feline spongiform encephalopathy (FSE). We performed amplicon sequencing to identify feline SPRN polymorphisms in the 623 bp encompassing the open reading frame (ORF) and a small part of the 3' untranslated region (UTR) of the SPRN gene. We analyzed the impact of feline SPRN polymorphisms on the secondary structure of SPRN mRNA using RNAsnp. In addition, to find feline-specific amino acids, we carried out multiple sequence alignments using ClustalW. Furthermore, we analyzed the N-terminal signal peptide and glycosylphosphatidylinositol (GPI)-anchor using SignalP and PredGPI, respectively. We identified three novel SNPs in the feline SPRN gene and did not find strong linkage disequilibrium (LD) among the three SNPs. We found four major haplotypes of the SPRN polymorphisms. Strong LD was not observed between PRNP and SPRN polymorphisms. In addition, we found alterations in the secondary structure and minimum free energy of the mRNA according to the haplotypes in the SPRN polymorphisms. Furthermore, we found four feline-specific amino acids in the feline Sho using multiple sequence alignments among several species. Lastly, the N-terminal signal sequence and cutting site of the Sho protein of cats showed similarity with those of other species. However, the feline Sho protein exhibited the shortest signal sequence and a unique amino acid in the omega-site of the GPI anchor. To the best of our knowledge, this is the first report on genetic polymorphisms of the feline SPRN gene.
Assuntos
Encefalopatias , Doenças Priônicas , Príons , Aminoácidos/genética , Animais , Gatos , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Doenças Priônicas/metabolismo , Proteínas Priônicas/genética , Príons/genética , Sinais Direcionadores de Proteínas/genética , RNA MensageiroRESUMO
BACKGROUND: IQSEC3, a gephyrin-binding GABAergic (gamma-aminobutyric acidergic) synapse-specific guanine nucleotide exchange factor, was recently reported to regulate activity-dependent GABAergic synapse maturation, but the underlying signaling mechanisms remain incompletely understood. METHODS: We generated mice with conditional knockout (cKO) of Iqsec3 to examine whether altered synaptic inhibition influences hippocampus-dependent fear memory formation. In addition, electrophysiological recordings, immunohistochemistry, and behavioral assays were used to address our question. RESULTS: We found that Iqsec3-cKO induces a specific reduction in GABAergic synapse density, GABAergic synaptic transmission, and maintenance of long-term potentiation in the hippocampal CA1 region. In addition, Iqsec3-cKO mice exhibited impaired fear memory formation. Strikingly, Iqsec3-cKO caused abnormally enhanced activation of ribosomal P70-S6K1-mediated signaling in the hippocampus but not in the cortex. Furthermore, inhibiting upregulated S6K1 signaling by expressing dominant-negative S6K1 in the hippocampal CA1 of Iqsec3-cKO mice completely rescued impaired fear learning and inhibitory synapse density but not deficits in long-term potentiation maintenance. Finally, upregulated S6K1 signaling was rescued by IQSEC3 wild-type, but not by an ARF-GEF (adenosine diphosphate ribosylation factor-guanine nucleotide exchange factor) inactive IQSEC3 mutant. CONCLUSIONS: Our results suggest that IQSEC3-mediated balanced synaptic inhibition in hippocampal CA1 is critical for the proper formation of hippocampus-dependent fear memory.
Assuntos
Medo , Fatores de Troca do Nucleotídeo Guanina , Hipocampo , Sinapses , Animais , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sinapses/metabolismo , Regulação para CimaRESUMO
SLITRK2 is a single-pass transmembrane protein expressed at postsynaptic neurons that regulates neurite outgrowth and excitatory synapse maintenance. In the present study, we report on rare variants (one nonsense and six missense variants) in SLITRK2 on the X chromosome identified by exome sequencing in individuals with neurodevelopmental disorders. Functional studies showed that some variants displayed impaired membrane transport and impaired excitatory synapse-promoting effects. Strikingly, these variations abolished the ability of SLITRK2 wild-type to reduce the levels of the receptor tyrosine kinase TrkB in neurons. Moreover, Slitrk2 conditional knockout mice exhibited impaired long-term memory and abnormal gait, recapitulating a subset of clinical features of patients with SLITRK2 variants. Furthermore, impaired excitatory synapse maintenance induced by hippocampal CA1-specific cKO of Slitrk2 caused abnormalities in spatial reference memory. Collectively, these data suggest that SLITRK2 is involved in X-linked neurodevelopmental disorders that are caused by perturbation of diverse facets of SLITRK2 function.
Assuntos
Transtornos do Neurodesenvolvimento , Sinapses , Animais , Cognição , Hipocampo/fisiologia , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Sinapses/metabolismoRESUMO
Activity-dependent GABAergic synapse plasticity is important for normal brain functions, but the underlying molecular mechanisms remain incompletely understood. Here, we show that Npas4 (neuronal PAS-domain protein 4) transcriptionally regulates the expression of IQSEC3, a GABAergic synapse-specific guanine nucleotide-exchange factor for ADP-ribosylation factor (ARF-GEF) that directly interacts with gephyrin. Neuronal activation by an enriched environment induces Npas4-mediated upregulation of IQSEC3 protein specifically in CA1 stratum oriens layer somatostatin (SST)-expressing GABAergic interneurons. SST+ interneuron-specific knockout (KO) of Npas4 compromises synaptic transmission in these GABAergic interneurons, increases neuronal activity in CA1 pyramidal neurons, and reduces anxiety behavior, all of which are normalized by the expression of wild-type IQSEC3, but not a dominant-negative ARF-GEF-inactive mutant, in SST+ interneurons of Npas4-KO mice. Our results suggest that IQSEC3 is a key GABAergic synapse component that is directed by Npas4 and ARF activity, specifically in SST+ interneurons, to orchestrate excitation-to-inhibition balance and control anxiety-like behavior.
Assuntos
Ansiedade/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Comportamento Animal , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Somatostatina/metabolismo , Animais , Neurônios GABAérgicos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Ligação Proteica , Sinapses/metabolismo , Transmissão Sináptica , Regulação para CimaRESUMO
Prion diseases are fatal neurodegenerative disorders characterized by vacuolation and gliosis in the brain. Prion diseases have been reported in several mammals, and genetic polymorphisms of the prion protein gene (PRNP) play an essential role in the vulnerability of prion diseases. However, to date, investigations of PRNP polymorphisms are rare in cats, which are the major host of feline spongiform encephalopathy (FSE). Thus, we investigated the genetic polymorphisms of the cat PRNP gene and analyzed the structural characteristics of the PrP of cats compared to those of dog, prion disease-resistant animal. To investigate the genetic variations of the cat PRNP gene in 208 cats, we performed amplicon sequencing and examined the genotype, allele and haplotype frequencies of cat PRNP polymorphisms. We evaluated the influence of cat PRNP polymorphisms using PolyPhen-2, PANTHER, PROVEAN and AMYCO. In addition, we carried out structural analysis of cat PrP according to the allele of nonsynonymous single nucleotide polymorphism (SNP) (c.457G > A, Glu153Lys) using Swiss-PdbViewer. Finally, we compared the structural differences between cat and canine PrPs for SNPs associated with prion disease resistance in dogs. We identified a total of 15 polymorphisms, including 14 novel SNPs and one insertion/deletion polymorphism (InDel). Among them, Glu153Lys was predicted to affect the structural stability and amyloid propensity of cat PrP. In addition, asparagine at codon 166 of cat PrP was predicted to have longer hydrogen bond than aspartic acid at codon 163 of canine PrP. Furthermore, substitution to dog-specific amino acids in cat PrP showed an increase in structural stability. To the best of our knowledge, this is the first study regarding the structural characteristics of cat PRNP gene.
Assuntos
Gatos/genética , Predisposição Genética para Doença , Doenças Priônicas/genética , Proteínas Priônicas/genética , Animais , Resistência à Doença/genética , Cães/genética , Feminino , Masculino , Ovário , Polimorfismo de Nucleotídeo Único , Doenças Priônicas/veterinária , Estabilidade Proteica , TestículoRESUMO
Synaptic adhesion molecules play an important role in the formation, maintenance and refinement of neuronal connectivity. Recently, several leucine rich repeat (LRR) domain containing neuronal adhesion molecules have been characterized including netrin G-ligands, SLITRKs and the synaptic adhesion-like molecules (SALMs). Dysregulation of these adhesion molecules have been genetically and functionally linked to various neurological disorders. Here we investigated the molecular structure and mechanism of ligand interactions for the postsynaptic SALM3 adhesion protein with its presynaptic ligand, receptor protein tyrosine phosphatase σ (PTPσ). We solved the crystal structure of the dimerized LRR domain of SALM3, revealing the conserved structural features and mechanism of dimerization. Furthermore, we determined the complex structure of SALM3 with PTPσ using small angle X-ray scattering, revealing a 2:2 complex similar to that observed for SALM5. Solution studies unraveled additional flexibility for the complex structure, but validated the uniform mode of action for SALM3 and SALM5 to promote synapse formation. The relevance of the key interface residues was further confirmed by mutational analysis with cellular binding assays and artificial synapse formation assays. Collectively, our results suggest that SALM3 dimerization is a pre-requisite for the SALM3-PTPσ complex to exert synaptogenic activity.
Assuntos
Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/fisiologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química , Sinapses/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/química , Diferenciação Celular , Cristalografia por Raios X , Análise Mutacional de DNA , Drosophila , Fibronectinas/química , Glicosilação , Células HEK293 , Humanos , Ligantes , Camundongos , Camundongos Transgênicos , Monoéster Fosfórico Hidrolases/química , Domínios Proteicos , Multimerização Proteica , Espalhamento de RadiaçãoRESUMO
ADP ribosylation factors (ARFs) are a family of small GTPases composed of six members (ARF1-6) that control various cellular functions, including membrane trafficking and actin cytoskeletal rearrangement, in eukaryotic cells. Among them, ARF1 and ARF6 are the most studied in neurons, particularly at glutamatergic synapses, but their roles at GABAergic synapses have not been investigated. Here, we show that a subset of ARF6 protein is localized at GABAergic synapses in cultured hippocampal neurons. In addition, we found that knockdown (KD) of ARF6, but not ARF1, triggered a reduction in the number of GABAergic synaptic puncta in mature cultured neurons in an ARF activity-dependent manner. ARF6 KD also reduced GABAergic synaptic density in the mouse hippocampal dentate gyrus (DG) region. Furthermore, ARF6 KD in the DG increased seizure susceptibility in an induced epilepsy model. Viewed together, our results suggest that modulating ARF6 and its regulators could be a therapeutic strategy against brain pathologies involving hippocampal network dysfunction, such as epilepsy.
Assuntos
Fatores de Ribosilação do ADP/fisiologia , Neurônios GABAérgicos/fisiologia , Sinapses/metabolismo , Fator 1 de Ribosilação do ADP/fisiologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/antagonistas & inibidores , Fatores de Ribosilação do ADP/genética , Animais , Células Cultivadas , Neurônios GABAérgicos/ultraestrutura , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Hipocampo/citologia , Hipocampo/embriologia , Humanos , Ácido Caínico/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Mutação Puntual , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ratos , Proteínas Recombinantes/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/fisiopatologia , Convulsões/prevenção & controleRESUMO
Gephyrin interacts with various GABAergic synaptic proteins to organize GABAergic synapse development. Among the multitude of gephyrin-binding proteins is IQSEC3, a recently identified component at GABAergic synapses that acts through its ADP ribosylation factor-guanine nucleotide exchange factor (ARF-GEF) activity to orchestrate GABAergic synapse formation. Here, we show that IQSEC3 knockdown (KD) reduced GABAergic synaptic density in vivo, suggesting that IQSEC3 is required for GABAergic synapse maintenance in vivo. We further show that IQSEC3 KD in the dentate gyrus (DG) increases seizure susceptibility and triggers selective depletion of somatostatin (SST) peptides in the DG hilus in an ARF-GEP activity-dependent manner. Strikingly, selective introduction of SST into SST interneurons in DG-specific IQSEC3-KD mice reverses GABAergic synaptic deficits. Thus, our data suggest that IQSEC3 is required for linking gephyrin-GABAA receptor complexes with ARF-dependent pathways to prevent aberrant, runaway excitation and thereby contributes to the integrity of SST interneurons and proper GABAergic synapse maintenance.