Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(26): e2121400119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737834

RESUMO

Deficiencies of the transmembrane iron-transporting protein ferroportin (FPN1) cause the iron misdistribution that underlies ferroportin disease, anemia of inflammation, and several other human diseases and conditions. A small molecule natural product, hinokitiol, was recently shown to serve as a surrogate transmembrane iron transporter that can restore hemoglobinization in zebrafish deficient in other iron transporting proteins and can increase gut iron absorption in FPN1-deficient flatiron mice. However, whether hinokitiol can restore normal iron physiology in FPN1-deficient animals or primary cells from patients and the mechanisms underlying such targeted activities remain unknown. Here, we show that hinokitiol redistributes iron from the liver to red blood cells in flatiron mice, thereby increasing hemoglobin and hematocrit. Mechanistic studies confirm that hinokitiol functions as a surrogate transmembrane iron transporter to release iron trapped within liver macrophages, that hinokitiol-Fe complexes transfer iron to transferrin, and that the resulting transferrin-Fe complexes drive red blood cell maturation in a transferrin-receptor-dependent manner. We also show in FPN1-deficient primary macrophages derived from patients with ferroportin disease that hinokitiol moves labile iron from inside to outside cells and decreases intracellular ferritin levels. The mobilization of nonlabile iron is accompanied by reductions in intracellular ferritin, consistent with the activation of regulated ferritin proteolysis. These findings collectively provide foundational support for the translation of small molecule iron transporters into therapies for human diseases caused by iron misdistribution.


Assuntos
Ferro , Macrófagos , Monoterpenos , Tropolona/análogos & derivados , Animais , Proteínas de Transporte de Cátions/deficiência , Ferritinas/metabolismo , Humanos , Ferro/metabolismo , Macrófagos/metabolismo , Camundongos , Monoterpenos/metabolismo , Transferrina/metabolismo , Tropolona/metabolismo , Peixe-Zebra/metabolismo
2.
Kidney Int ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39067856

RESUMO

Acute kidney injury (AKI) increases the risk of in-hospital death, adds to expense of care, and risk of early chronic kidney disease. AKI often follows an acute event such that timely treatment could ameliorate AKI and potentially reduce the risk of additional disease. Despite therapeutic success of dexamethasone in animal models, clinical trials have not demonstrated broad success. To improve the safety and efficacy of dexamethasone for AKI, we developed and characterized a novel, kidney-specific nanoparticle enabling specific within-kidney targeting to proximal tubular epithelial cells provided by the megalin ligand cilastatin. Cilastatin and dexamethasone were complexed to H-Dot nanoparticles, which were constructed from generally recognized as safe components. Cilastatin/Dexamethasone/H-Dot nanotherapeutics were found to be stable at plasma pH and demonstrated salutary release kinetics at urine pH. In vivo, they were specifically biodistributed to the kidney and bladder, with 75% recovery in the urine and with reduced systemic toxicity compared to native dexamethasone. Cilastatin complexation conferred proximal tubular epithelial cell specificity within the kidney in vivo and enabled dexamethasone delivery to the proximal tubular epithelial cell nucleus in vitro. The Cilastatin/Dexamethasone/H-Dot nanotherapeutic improved kidney function and reduced kidney cellular injury when administered to male C57BL/6 mice in two translational models of AKI (rhabdomyolysis and bilateral ischemia reperfusion). Thus, our design-based targeting and therapeutic loading of a kidney-specific nanoparticle resulted in preservation of the efficacy of dexamethasone, combined with reduced off-target disposition and toxic effects. Hence, our study illustrates a potential strategy to target AKI and other diseases of the kidney.

3.
Blood ; 139(6): 936-941, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34388243

RESUMO

Sickle cell disease (SCD) is characterized by increased hemolysis, which results in plasma heme overload and ultimately cardiovascular complications. Here, we hypothesized that increased heme in SCD causes upregulation of heme oxygenase 1 (Hmox1), which consequently drives cardiomyopathy through ferroptosis, an iron-dependent non-apoptotic form of cell death. First, we demonstrated that the Townes SCD mice had higher levels of hemopexin-free heme in the serum and increased cardiomyopathy, which was corrected by hemopexin supplementation. Cardiomyopathy in SCD mice was associated with upregulation of cardiac Hmox1, and inhibition or induction of Hmox1 improved or worsened cardiac damage, respectively. Because free iron, a product of heme degradation through Hmox1, has been implicated in toxicities including ferroptosis, we evaluated the downstream effects of elevated heme in SCD. Consistent with Hmox1 upregulation and iron overload, levels of lipid peroxidation and ferroptotic markers increased in SCD mice, which were corrected by hemopexin administration. Moreover, ferroptosis inhibitors decreased cardiomyopathy, whereas a ferroptosis inducer erastin exacerbated cardiac damage in SCD and induced cardiac ferroptosis in nonsickling mice. Finally, inhibition or induction of Hmox1 decreased or increased cardiac ferroptosis in SCD mice, respectively. Together, our results identify ferroptosis as a key mechanism of cardiomyopathy in SCD.


Assuntos
Anemia Falciforme/complicações , Cardiomiopatias/etiologia , Ferroptose , Heme Oxigenase-1/metabolismo , Heme/metabolismo , Proteínas de Membrana/metabolismo , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia
4.
Mol Pharm ; 20(1): 481-490, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36378830

RESUMO

Deferoxamine (DFO) is an effective FDA-approved iron chelator. However, its use is considerably limited by off-target toxicities and an extremely cumbersome dose regimen with daily infusions. The recent development of a deferoxamine-based nanochelator (DFO-NP) with selective renal excretion has shown promise in ameliorating animal models of iron overload with a substantially improved safety profile. To further the preclinical development of this promising nanochelator and to inform on the feasibility of clinical development, it is necessary to fully characterize the dose and administration-route-dependent pharmacokinetics and to develop predictive pharmacokinetic (PK) models describing absorption and disposition. Herein, we have evaluated the absorption, distribution, and elimination of DFO-NPs after intravenous and subcutaneous (SC) injection at therapeutically relevant doses in Sprague Dawley rats. We also characterized compartment-based model structures and identified model-based parameters to quantitatively describe the PK of DFO-NPs. Our modeling efforts confirmed that disposition could be described using a three-compartment mamillary model with elimination and saturable reabsorption both occurring from the third compartment. We also determined that absorption was nonlinear and best described by parallel saturable and first-order processes. Finally, we characterized a novel pathway for saturable SC absorption of an ultrasmall organic nanoparticle directly into the systemic circulation, which offers a novel strategy for improving drug exposure for nanotherapeutics.


Assuntos
Desferroxamina , Sobrecarga de Ferro , Ratos , Animais , Ratos Sprague-Dawley , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Quelantes/uso terapêutico
5.
J Immunol ; 206(6): 1284-1296, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33568400

RESUMO

Neutralizing Abs suppress HIV infection by accelerating viral clearance from blood circulation in addition to neutralization. The elimination mechanism is largely unknown. We determined that human liver sinusoidal endothelial cells (LSEC) express FcγRIIb as the lone Fcγ receptor, and using humanized FcγRIIb mouse, we found that Ab-opsonized HIV pseudoviruses were cleared considerably faster from circulation than HIV by LSEC FcγRIIb. Compared with humanized FcγRIIb-expressing mice, HIV clearance was significantly slower in FcγRIIb knockout mice. Interestingly, a pentamix of neutralizing Abs cleared HIV faster compared with hyperimmune anti-HIV Ig (HIVIG), although the HIV Ab/Ag ratio was higher in immune complexes made of HIVIG and HIV than pentamix and HIV. The effector mechanism of LSEC FcγRIIb was identified to be endocytosis. Once endocytosed, both Ab-opsonized HIV pseudoviruses and HIV localized to lysosomes. This suggests that clearance of HIV, endocytosis, and lysosomal trafficking within LSEC occur sequentially and that the clearance rate may influence downstream events. Most importantly, we have identified LSEC FcγRIIb-mediated endocytosis to be the Fc effector mechanism to eliminate cell-free HIV by Abs, which could inform development of HIV vaccine and Ab therapy.


Assuntos
Anticorpos Neutralizantes/metabolismo , Endocitose/imunologia , Células Endoteliais/imunologia , Infecções por HIV/imunologia , Receptores de IgG/metabolismo , Animais , Capilares/citologia , Capilares/imunologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Células HEK293 , HIV/imunologia , Infecções por HIV/sangue , Infecções por HIV/patologia , Infecções por HIV/virologia , Voluntários Saudáveis , Humanos , Fígado/irrigação sanguínea , Fígado/imunologia , Lisossomos/metabolismo , Lisossomos/virologia , Masculino , Camundongos , Camundongos Knockout , Cultura Primária de Células , Receptores de IgG/genética
6.
Mol Biol Rep ; 50(4): 3179-3187, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36701040

RESUMO

BACKGROUND: Hereditary hemochromatosis (HH) is characterized by iron overload that can cause multiple organ dysfunction primarily due to uncontrolled iron-mediated oxidative stress. Although HH leads to muscular weakness, disorder, and fatigue, the mechanism by which HH affects skeletal muscle physiology is largely unknown. METHODS: Using Hfe knockout mice (6-7 months old), a well-defined mouse model of HH, we examined iron status in the skeletal muscle, as well as other organs. As mitochondria are key organelle for muscular function, this study also explored how molecular markers for mitochondrial function and related systems are regulated in the HH skeletal muscle using western blots. RESULTS: Although iron overload was evident at the systemic level, only mild iron overload was observed in the skeletal muscle of HH. Of note, mitochondrial electron transport chain complex I was upregulated in the HH skeletal muscle, which was accompanied by enhanced autophagy. However, these molecular changes were not associated with oxidative stress, suggesting altered mitochondrial metabolism in the muscle in response to iron overload. CONCLUSIONS: These early adaptive responses may be important for supporting mitochondrial health before fully developing skeletal muscle dysfunction in HH. More studies are needed to determine the role of autophagy in the HH-related muscle mitochondrial dysfunction.


Assuntos
Hemocromatose , Sobrecarga de Ferro , Camundongos , Animais , Hemocromatose/genética , Hemocromatose/complicações , Hemocromatose/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Proteína da Hemocromatose/genética , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/complicações , Ferro/metabolismo , Camundongos Knockout , Músculo Esquelético/metabolismo
7.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895146

RESUMO

Platinum-based anticancer agents have revolutionized oncological treatments globally. However, their therapeutic efficacy is often accompanied by systemic toxicity. Carboplatin, recognized for its relatively lower toxicity profile than cisplatin, still presents off-target toxicities, including dose-dependent cardiotoxicity, neurotoxicity, and myelosuppression. In this study, we demonstrate a delivery strategy of carboplatin to mitigate its off-target toxicity by leveraging the potential of zwitterionic nanocarrier, H-dot. The designed carboplatin/H-dot complex (Car/H-dot) exhibits rapid drug release kinetics and notable accumulation in proximity to tumor sites, indicative of amplified tumor targeting precision. Intriguingly, the Car/H-dot shows remarkable efficacy in eliminating tumors across insulinoma animal models. Encouragingly, concerns linked to carboplatin-induced cardiotoxicity are effectively alleviated by adopting the Car/H-dot nanotherapeutic approach. This pioneering investigation not only underscores the viability of H-dot as an organic nanocarrier for platinum drugs but also emphasizes its pivotal role in ameliorating associated toxicities. Thus, this study heralds a promising advancement in refining the therapeutic landscape of platinum-based chemotherapy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Carboplatina/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Neoplasias/tratamento farmacológico , Platina/farmacologia , Platina/uso terapêutico
8.
Arch Toxicol ; 96(7): 1951-1962, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35445828

RESUMO

N,N'-bis(2-mercaptoethyl)isophthalamide (NBMI) is a novel lipophilic metal chelator and antioxidant used in mercury poisoning. Recent studies have suggested that NBMI may also bind to other metals such as lead and iron. Since NBMI can enter the brain, we evaluated if NBMI removes excess iron from the iron-loaded brain and ameliorates iron-induced oxidative stress. First, NBMI exhibited preferential binding to ferrous (Fe2+) iron with a negligible binding affinity to ferric (Fe3+) iron, indicating a selective chelation of labile iron. Second, NBMI protected SH-SY5Y human neuroblastoma cells from the cytotoxic effects of high iron. NBMI also decreased cellular labile iron and lessened the production of iron-induced reactive oxygen species in these cells. Deferiprone (DFP), a commonly used oral iron chelator, failed to prevent iron-induced cytotoxicity or labile iron accumulation. Next, we validated the efficacy of NBMI in Hfe H67D mutant mice, a mouse model of brain iron accumulation (BIA). Oral gavage of NBMI for 6 weeks decreased iron accumulation in the brain as well as liver, whereas DFP showed iron chelation only in the liver, but not in the brain. Notably, depletion of brain copper and anemia were observed in BIA mice treated with DFP, but not with NBMI, suggesting a superior safety profile of NBMI over DFP for long-term use. Collectively, our study demonstrates that NBMI provides a neuroprotective effect against BIA and has therapeutic potential for neurodegenerative diseases associated with BIA.


Assuntos
Neuroblastoma , Animais , Humanos , Camundongos , Derivados de Benzeno , Encéfalo , Quelantes/farmacologia , Quelantes/uso terapêutico , Ferro/metabolismo , Neuroblastoma/metabolismo , Compostos de Sulfidrila
9.
Drug Chem Toxicol ; 45(5): 2193-2201, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34219570

RESUMO

The study aims to identify the safety profile of a mixed extract (KGC-02-PS) from two traditional medicinal herbs, Puerariae radix and Hizikia fusiforme. In a subacute oral toxicity study, KGC-02-PS was administered orally for 28 days by gavage to Sprague Dawley rats (both sexes) at a daily dose of 0, 500, 1000, and 2000 mg/kg body weight. Bodyweight, food consumption, and clinical signs were monitored during the experimental period. After administering the final dose, this study conducted hematology, serum biochemistry, and pathological evaluations. In addition, the study performed a bacterial reverse mutation test with varying concentrations of KGC-02-PS (312.5 µg - 5,000 µg/plate) following OECD guideline No. 471, before testing five bacterial strains (Salmonella typhimurium TA98, TA100, TA1535, TA1537, and Escherichia coli WP2) in the presence or absence of metabolic activation. The preclinical evaluation of KGC-02-PS's subacute oral toxicity yielded no associated toxicological effects or any changes in clinical signs, body weight, and food consumption. Moreover, examining KGC-02-PS's hematological and serum biochemical characteristics and pathology yielded no toxicological changes in terms of organ weight measurements and gross or histopathological findings. KGC-02-PS neither increased the number of revertant colonies in all bacterial strains used in the bacterial reverse mutation test, nor did it induce genotoxicity related to bacterial reverse mutations under the study's conditions. Also, KGC-02-PS's no-observed-adverse-effect level was greater than 2000 mg/kg.


Assuntos
Mutagênicos , Pueraria , Animais , Peso Corporal , Escherichia coli/genética , Feminino , Masculino , Testes de Mutagenicidade , Mutagênicos/farmacologia , Pueraria/genética , Ratos , Ratos Sprague-Dawley
10.
Ann Surg Oncol ; 28(8): 4458-4470, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33423177

RESUMO

BACKGROUND: Few studies have presented evidence pertaining to the adequate minimum number of adjuvant chemotherapy (AC) cycles required to achieve an oncologic benefit for gastric cancer. METHODS: From January 2012 to December 2013, data from patients who underwent curative radical gastrectomy and consequently received AC for pathologic stage 2 or 3 gastric cancer at 27 institutions in South Korea were analyzed. RESULTS: The study enrolled 925 patients, 661 patients (71.5%) who completed 8 cycles of AC and 264 patients (28.5%) who did not. Compared with the mean disease-free survival (DFS) of the patients who completed 8 AC cycles (69.3 months), the mean DFS of patients who completed 6 AC cycles (72.4 months; p = 0.531) and those who completed 7 AC cycles (63.7 months; p = 0.184) did not differ significantly. However, the mean DFS of the patients who completed 5 AC cycles (48.2 months; p = 0.016) and those who completed 1-4 AC cycles (62.9 months; p = 0.036) was significantly lower than the DFS of those who completed 8 AC cycles. In the multivariate Cox proportional hazards analysis, the mean DFS was significantly affected by advanced stage, large tumor size, positive vascular invasion, and number of completed AC cycles (1-5 cycles: hazard ratio 1.45; 95% confidence interval 1.01-2.08; p = 0.041). CONCLUSION: The current multicenter observational cohort study showed that the mean DFS for 6 or 7 AC cycles was similar to that for 8 AC cycles as an adjuvant treatment for gastric cancer.


Assuntos
Neoplasias Gástricas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimioterapia Adjuvante , Estudos de Coortes , Intervalo Livre de Doença , Gastrectomia , Humanos , Estadiamento de Neoplasias , República da Coreia , Estudos Retrospectivos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/cirurgia
11.
Arch Toxicol ; 95(12): 3665-3679, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34590183

RESUMO

Environmental and occupational exposure to heavy metals remains one of the major concerns in public health. Increased levels of manganese (Mn) pollution are associated with profound neurotoxic effects, including neurobehavioral deficits and disturbances resembling Parkinson's disease. While Mn absorption is in part mediated by iron transporters, recent studies have shown that the levels of iron transporters are modified by alcohol and that chronic alcohol consumption increases body iron stores. However, it is largely unexplored whether alcohol exposure influences the transport and neurotoxicity of Mn. To address this question, we exposed mice to ethanol (10%; v/v) by drinking water for 4 weeks, during which period MnCl2 (5 mg/kg) or saline solutions were administered daily by intranasal instillation. Ethanol consumption in mice increased brain Mn levels in a dose-dependent manner after Mn instillation, determined by inductively-coupled plasma mass spectrometry, which was accompanied by up-regulation of iron transporters, as assessed by western blotting and qPCR. In addition, alcohol drinking increased hypoxic response and decreased hepcidin expression, providing the molecular mechanism of increased iron transporters and Mn uptake upon alcohol consumption. Moreover, brain dopamine levels, analyzed by HPLC, were decreased after intranasal Mn instillation, which was worsened by alcohol. Likewise, alcohol-Mn co-exposure synergistically altered dopaminergic protein expression. Finally, alcohol binge-drinking, which resembles alcohol drinking manner in humans, increased brain Mn content along with upregulation of iron transporters. Our study suggests that individuals who consume alcohol may have a higher risk of Mn neurotoxicity upon Mn exposure.


Assuntos
Encéfalo/efeitos dos fármacos , Cloretos/toxicidade , Etanol/toxicidade , Síndromes Neurotóxicas/etiologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Consumo Excessivo de Bebidas Alcoólicas/complicações , Encéfalo/metabolismo , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Etanol/administração & dosagem , Feminino , Hepcidinas/metabolismo , Masculino , Compostos de Manganês , Camundongos , Camundongos Endogâmicos C57BL
12.
FASEB J ; 33(2): 2460-2471, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277817

RESUMO

Iron deficiency is closely associated with altered GABA metabolism and affective behavior. While mutation in the hemochromatosis ( HFE) gene disrupts iron homeostasis and promotes oxidative stress that increases the risk of neurodegeneration, it is largely unknown whether HFE mutation modifies GABAergic homeostasis and emotional behavior. The goal of our study was to investigate the impact of HFE on GABAergic neurochemistry and redox-epigenetic regulation in the brain using H67D HFE-mutant mice that recapitulates the H63D-HFE mutation in humans. H67D mice displayed elevated redox-active iron levels in the brain by 32% compared to age-matched wild-type mice. Moreover, the H67D brain had increased isoprostane and decreased glutathione, indicating elevated oxidative stress. Additionally, the H67D brain had decreased global methylation and attenuated DNA methyltransferase (DNMT) activity. Direct addition of iron to purified DNMT in vitro decreased enzyme activity in a concentration-dependent manner. Last, H67D mice exhibited decreased anxiety-like behavior, which was associated with increased expression of the GABAA receptor α2 subunits by 93%, and these changes were also observed in H67D mice fed a low-iron diet. Taken together, our results suggest a putative role of HFE in regulating labile iron status in the brain, and mutation in H67D perturbs redox-methylation status, contributing to GABAergic dysfunction.-Ye, Q., Trivedi, M., Zhang, Y., Böhlke, M., Alsulimani, H., Chang, J., Maher, T., Deth, R., Kim, J. Brain iron loading impairs DNA methylation and alters GABAergic function in mice.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Metilação de DNA , Proteína da Hemocromatose/fisiologia , Ferro/metabolismo , Mutação , Receptores de GABA-A/metabolismo , Animais , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Subunidades Proteicas , Receptores de GABA-A/genética
13.
Mol Pharm ; 17(6): 1996-2005, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32365295

RESUMO

Nucleic acid-based therapeutics, including the use of messenger RNA (mRNA) as a drug molecule, has tremendous potential in the treatment of chronic diseases, such as age-related neurodegenerative diseases. In this study, we have developed a cationic liposomal formulation of mRNA and evaluated the potential of intranasal delivery to the brain in murine model. Preliminary in vitro studies in J774A.1 murine macrophages showed GFP expression up to 24 h and stably expressed GFP protein in the cytosol. Upon intranasal administration of GFP-mRNA/cationic liposomes (3 mg/kg dose) in mice, there was significantly higher GFP-mRNA expression in the brain post 24 h as compared to either naked mRNA or the vehicle-treated group. Luciferase mRNA encapsulated in cationic liposomes was used for quantification of mRNA expression distribution in the brain. The results showed increased luciferase activity in the whole brain in a dose-dependent manner. Specifically, the luciferase-mRNA/cationic liposome group (3 mg/kg dose) showed significantly higher luciferase activity in the cortex, striatum, and midbrain regions as compared with the control groups, with minimal systemic exposure. Overall, the results of this study demonstrate the feasibility of brain-specific, nonviral mRNA delivery for the treatment of various neurological disorders.


Assuntos
Encéfalo/metabolismo , Cátions/química , RNA Mensageiro/administração & dosagem , RNA Mensageiro/metabolismo , Administração Intranasal , Animais , Linhagem Celular , Sistemas de Liberação de Medicamentos , Lipossomos/química , Masculino , Camundongos
14.
Sensors (Basel) ; 20(11)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498281

RESUMO

Integrated guidance and control using model predictive control against a maneuvering target is proposed. Equations of motion for terminal homing are developed with the consideration of short-period dynamics as well as actuator dynamics of a missile. The convex optimization problem is solved considering inequality constraints that consist of acceleration and look angle limits. A discrete-time extended Kalman filter is used to estimate the position of the target with a look angle as a measurement. This is utilized to form a flight-path angle of the target, and polynomial fitting is applied for prediction. Numerical simulation including a Monte Carlo simulation is performed to verify the performance of the proposed algorithm.

15.
Sensors (Basel) ; 20(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854289

RESUMO

This paper presents closed-form optimal cooperative guidance laws for two UAVs under information constraints that achieve the required relative approach angle. Two UAVs cooperate to optimize a common cost function under a coupled constraint on terminal velocity vectors and the information constraint which defines the sensor information availability. To handle the information constraint, a general two-player partially nested decentralized optimal control problem is considered in the continuous finite-horizon time domain. It is shown that under the state-separation principle the optimal solution of the decentralized control problem can be obtained by solving two centralized subproblems which cover the prediction problem for the information-deficient player and the prediction error minimization problem for the player with full information. Based on the solution of the decentralized optimal control problem, the explicit closed-form cooperative guidance laws that can be efficiently implemented on conventional guidance computers are derived. The performance of the proposed guidance laws is investigated on both centralized and decentralized cooperative scenarios with nonlinear engagement kinematics of networked two-UAV systems.

16.
Nanomedicine ; 22: 102091, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31626992

RESUMO

Iron is a nutrient metal, but excess iron promotes tissue damage. Since iron chelation therapies exhibit multiple off-target toxicities, there is a substantial demand for more specific approaches to decrease iron burden in iron overload. While the divalent metal transporter 1 (DMT1) plays a well-established role in the absorption of dietary iron, up-regulation of intestinal DMT1 is associated with iron overload in both humans and rodents. Hence, we developed a novel pH-sensitive multi-compartmental particulate (MCP) oral delivery system that encapsulates DMT1 siRNA and validated its efficacy in mice. Using the gelatin NPs coated with Eudragit® L100-55, we demonstrated that DMT1 siRNA-loaded MCPs down-regulated DMT1 mRNA levels in the duodenum, which was consistent with decreased intestinal absorption of orally-administered 59Fe. Together, the Eudragit® L100-55-based oral siRNA delivery system could provide an effective strategy to specifically down-regulate duodenal DMT1 and mitigate iron absorption.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Sistemas de Liberação de Medicamentos , Inativação Gênica , Absorção Intestinal , Intestinos/fisiologia , Ferro/metabolismo , Nanopartículas/administração & dosagem , Resinas Acrílicas/química , Administração Oral , Animais , Células CACO-2 , Gelatina/química , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Ferro/administração & dosagem , Masculino , Camundongos , Nanopartículas/ultraestrutura , Tamanho da Partícula , RNA Interferente Pequeno/metabolismo
17.
Ann Surg ; 265(4): 766-773, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27058946

RESUMO

OBJECTIVE: The aim of this study was to investigate the feasibility of sentinel node mapping using a fluorescent dye and visible light in patients with gastric cancer. BACKGROUND: Recently, fluorescent imaging technology offers improved visibility with the possibility of better sensitivity or accuracy in sentinel node mapping. METHODS: Twenty patients with early gastric cancer, for whom laparoscopic distal gastrectomy with standard lymphadenectomy had been planned, were enrolled in this study. Before lymphadenectomy, the patients received a gastrofiberoscopic peritumoral injection of fluorescein solution. The sentinel basin was investigated via laparoscopic fluorescent imaging under blue light (wavelength of 440-490 nm) emitted from an LED curing light. The detection rate and lymph node status were analyzed in the enrolled patients. In addition, short-term clinical outcomes were also investigated. RESULTS: No hypersensitivity to the dye was identified in any enrolled patients. Sentinel nodes were detected in 19 of 20 enrolled patients (95.0%), and metastatic lymph nodes were found in 2 patients. The latter lymph nodes belonged to the sentinel basin of each patient. Meanwhile, 1 patient (5.0%) experienced a postoperative complication that was unrelated to sentinel node mapping. No mortality was recorded among enrolled cases. CONCLUSIONS: Sentinel node mapping with visible light fluorescence was a feasible method for visualizing sentinel nodes in patients with early gastric cancer. In addition, this method is advantageous in terms of visualizing the concrete relationship between the sentinel nodes and surrounding structures.


Assuntos
Corantes Fluorescentes/farmacologia , Gastrectomia/métodos , Gastroscopia/métodos , Biópsia de Linfonodo Sentinela/métodos , Linfonodo Sentinela/patologia , Neoplasias Gástricas/patologia , Adulto , Idoso , Intervalo Livre de Doença , Detecção Precoce de Câncer/métodos , Feminino , Gastrectomia/mortalidade , Gastroscopia/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias , Prognóstico , Estudos Prospectivos , República da Coreia , Medição de Risco , Neoplasias Gástricas/cirurgia , Taxa de Sobrevida , Resultado do Tratamento
18.
Behav Brain Sci ; 40: e77, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-29342539

RESUMO

Contrary to one assumption of CLASH, we suggest that colder rather than warm climates are the harsh, unpredictable ones, thus requiring greater self-control. We propose shifting emphasis from predictability to utility of prediction. Northern climates may be less predictable than tropical ones, making predictions and planning far more important, insofar as they can prevent fatalities and promote other pragmatic benefits.


Assuntos
Agressão , Autocontrole , Clima , Humanos , Estudos Longitudinais , Violência
19.
J Neurochem ; 138(6): 918-28, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27331785

RESUMO

The divalent metal transporter 1 (DMT1) is a major iron transporter required for iron absorption and erythropoiesis. Loss of DMT1 function results in microcytic anemia. While iron plays an important role in neural function, the behavioral consequences of DMT1 deficiency are largely unexplored. The goal of this study was to define the neurobehavioral and neurochemical phenotypes of homozygous Belgrade (b/b) rats that carry DMT1 mutation and explore potential mechanisms of these phenotypes. The b/b rats (11-12 weeks old) and their healthy littermate heterozygous (+/b) Belgrade rats were subject to elevated plus maze tasks. The b/b rats spent more time in open arms, entered open arms more frequently and traveled more distance in the maze than +/b controls, suggesting increased impulsivity. Impaired emotional behavior was associated with down-regulation of GABA in the hippocampus in b/b rats. Also, b/b rats showed increased GABAA receptor α1 and GABA transporter, indicating altered GABAergic function. Furthermore, metal analysis revealed that b/b rats have decreased total iron, but normal non-heme iron, in the brain. Interestingly, b/b rats exhibited unusually high copper levels in most brain regions, including striatum and hippocampus. Quantitative PCR analysis showed that both copper importer copper transporter 1 and exporter copper-transporting ATPase 1 were up-regulated in the hippocampus from b/b rats. Finally, b/b rats exhibited increased 8-isoprostane levels and decreased glutathione/glutathione disulfide ratio in the hippocampus, reflecting elevated oxidative stress. Combined, our results suggest that copper loading in DMT1 deficiency could induce oxidative stress and impair GABA metabolism, which promote impulsivity-like behavior. Iron-copper model: Mutations in the divalent metal transporter 1 (DMT1) decrease body iron status and up-regulate copper absorption, which leads to copper loading in the brain and consequently increases metal-induced oxidative stress. This event disrupts GABAergic neurotransmission and promotes impulsivity-like behavior. Our model provides better understanding of physiological risks associated with imbalanced metal metabolism in mental function and, more specifically, the interactions with GABA and redox control in the treatment of emotional disorders.


Assuntos
Química Encefálica/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/fisiologia , Cobre/metabolismo , Comportamento Impulsivo , Adenosina Trifosfatases/metabolismo , Animais , Ansiedade/genética , Ansiedade/psicologia , Comportamento Animal , Proteínas de Transporte de Cátions/metabolismo , Transportador de Cobre 1 , Regulação para Baixo , Emoções/fisiologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Hipocampo/metabolismo , Ferro/metabolismo , Masculino , Metionina/análogos & derivados , Mutação/genética , Ferroproteínas não Heme/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores de GABA-A/genética , Ácido gama-Aminobutírico/biossíntese
20.
J Pharm Pharm Sci ; 19(2): 239-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27518173

RESUMO

PURPOSE: To develop a quantitative pharmacokinetic model to characterize the disposition of methotrexate (MTX) at tumor site in tumor-bearing mice and to predict MTX concentrations in the human tumor. METHODS: The plasma profiles of MTX were obtained from normal mice, while microdialysis technique was employed to characterize the time course of MTX in tumor from breast tumor-bearing mice. Disposition profiles of plasma and tumor were analyzed by a hybrid physiologically-based pharmacokinetic (hPBPK) model that incorporates physiologically-relevant parameters such as tumor blood flow and volume, while plasma concentrations were used as a forcing input into the vascular-interstitial spaces of the tumor. The plasma profiles were initially described by a biexponential decay model to obtain a forcing function that enters into the vascular-interstitial spaces in the tumor. Using a defined forcing function, the tumor free concentrations were fitted to the hPBPK model. Based on the model developed, sensitivity analysis was conducted with a perturbation of PK parameters to predict different scenarios of intratumoral MTX transport. The relevant physiological PK parameters from the mouse model were then scaled-up and utilized to simulate human tumor concentrations. RESULTS: The mouse hPBPK model adequately characterized the concentration-time profiles of MTX in both plasma and tumor and produced various transfer rate constants between plasma and tumor. Our model was also able to reasonably predict MTX concentrations in the human tumor when human physiological data were utilized. CONCLUSIONS: The hPBPK model was able to quantitatively characterize the atypical transport of MTX in the tumor, supporting the idea that microdialysis is a valuable tool to study tumor biodistribution of drugs and to predict tumor concentrations in humans based on the pre-clinical data. This information can ultimately aid in the development of anticancer drugs with improved PK profiles. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Assuntos
Modelos Animais de Doenças , Metotrexato/análise , Metotrexato/farmacocinética , Microdiálise , Neoplasias/tratamento farmacológico , Animais , Humanos , Camundongos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA