Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 9(8)2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784646

RESUMO

Previously, we demonstrated that the homeoprotein Msx1 interaction with p53 inhibited tumor growth by inducing apoptosis. However, Msx1 can exert its tumor suppressive effect through the inhibition of angiogenesis since growth of the tumor relies on sufficient blood supply from the existing vessels to provide oxygen and nutrients for tumor growth. We hypothesized that the inhibition of tumor growth by Msx1 might be due to the inhibition of angiogenesis. Here, we explored the role of Msx1 in angiogenesis. Overexpression of Msx1 in HUVECs inhibited angiogenesis, and silencing of Msx1 by siRNA abrogated its anti-angiogenic effects. Furthermore, forced expression of Msx1 in mouse muscle tissue inhibited vessel sprouting, and application of an Ad-Msx1-transfected conditioned medium onto the chicken chorioallantoic membrane (CAM) led to a significant inhibition of new vessel formation. To explore the underlying mechanism of Msx1-mediated angiogenesis, yeast two-hybrid screening was performed, and we identified PIASy (protein inhibitor of activated STAT Y) as a novel Msx1-interacting protein. We mapped the homeodomain of Msx1 and the C-terminal domain of PIASy as respective interacting domains. Consistent with its anti-angiogenic function, overexpression of Msx1 suppressed the reporter activity of VEGF. Interestingly, PIASy stabilized Msx1 protein, whereas deletion of the Msx1-interacting domain in PIASy abrogated the inhibition of tube formation and the stabilization of Msx1 protein. Our findings suggest the functional importance of PIASy-Msx1 interaction in Msx1-mediated angiogenesis inhibition.


Assuntos
Fator de Transcrição MSX1/metabolismo , Neovascularização Fisiológica , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Embrião de Galinha , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica
2.
Exp Mol Med ; 41(6): 371-81, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19322027

RESUMO

During carcinogenesis, NF-gammaB mediates processes associated with deregulation of the normal control of proliferation, angiogenesis, and metastasis. Thus, suppression of NF-gammaB has been linked with chemoprevention of cancer. Accumulating findings reveal that heat shock protein 90 (HSP90) is a molecular chaperone and a component of the IgammaB kinase (IKK) complex that plays a central role in NF-gammaB activation. HSP90 also stabilizes key proteins involved in cell cycle control and apoptosis signaling. We have determined whether the exogenous administration of isoflavone-deprived soy peptide prevents 7,12-dimethylbenz[alpha]anthracene (DMBA)-induced rat mammary tumorigenesis and investigated the mechanism of action. Dietary administration of soy peptide (3.3 g/rat/day) significantly reduced the incidence of ductal carcinomas (50%), the number of tumors per multiple tumor-bearing rats (49%; P<0.05), and extended the latency period of tumor development (8.07+/-0.92 weeks) compared to control diet animals (10.80+/-1.30; P<0.05). Our results have further demonstrated that soy peptide (1) dramatically inhibits the expression of HSP90, thereby suppressing signaling pathway leading to NF-gammaB activation; (2) induces expression of p21, p53, and caspase-3 proteins; and (3) inhibits expression of VEGF. In agreement with our in vivo data, soy peptide treatment inhibited the growth of human breast MCF-7 tumor cells in a dose-dependent manner and induced apoptosis. Taken together, our in vivo and in vitro results suggest chemopreventive and tumor suppressive functions of isoflavone-deprived soy peptide by inducing growth arrest and apoptosis.


Assuntos
Adenocarcinoma/prevenção & controle , Apoptose/efeitos dos fármacos , Neoplasias da Mama/prevenção & controle , Proteínas de Soja/isolamento & purificação , Proteínas de Soja/uso terapêutico , 9,10-Dimetil-1,2-benzantraceno , Animais , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimioprevenção , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Isoflavonas/química , NF-kappa B/genética , NF-kappa B/metabolismo , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Proteínas de Soja/química , Glycine max/química
3.
Cancer Res ; 65(3): 749-57, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15705871

RESUMO

The stability of wild-type p53 is critical for its apoptotic function. In some cancers, wild-type p53 is inactivated by interaction with viral and cellular proteins, and restoration of its activity has therapeutic potential. Here, we identify homeobox Msx1 as a p53-interacting protein and show its novel function as a p53 regulator. Overexpression of homeobox Msx1 induced apoptosis of cancer cells harboring nonfunctional wild-type p53 and suppressed growth of human tumor xenografts in nude mice. The homeodomain of Msx1 functions as a protein-protein interacting motif rather than a DNA-binding domain and is essential for stabilization, nuclear accumulation, and apoptotic function of wild-type p53. The identification of a novel function of Msx1 as a p53 regulator may open new avenues for developing improved molecular therapies for tumors with a nonmutational p53 inactivation mechanism.


Assuntos
Apoptose/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Células HeLa , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Fator de Transcrição MSX1 , Camundongos , Transplante de Neoplasias , Sinais de Localização Nuclear/metabolismo , Estrutura Terciária de Proteína , Transfecção , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA