Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(49): 495206, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32946428

RESUMO

We propose extreme field confinement in a zigzag plasmonic crystal that can produce a wide plasmonic bandgap near the visible frequency range. By applying a periodic zigzag structure to a metal-insulator-metal plasmonic waveguide, the lowest three plasmonic crystal bands are flattened, creating a high-quality broadband plasmonic mirror over a wavelength range of 526-909 nm. Utilizing zigzag plasmonic crystals in a three-dimensional tapered metal-insulator-metal plasmonic cavity, extreme field confinement with a modal volume of less than 0.00005 λ 3 can be achieved even at resonances over a wide frequency range. In addition, by selecting the number of zigzag periods in the plasmonic crystal, critical coupling between the cavity and the waveguide can be achieved, thereby maximizing the field intensity with an enhancement factor of 105 or more. We believe that zigzag plasmonic crystals will provide a powerful platform for implementing broadband on-chip plasmonic devices.

2.
Adv Mater ; 32(51): e2003051, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33043504

RESUMO

Significant advances have been made in photonic integrated circuit technology, similar to the development of electronic integrated circuits. However, the miniaturization of cavity resonators, which are the essential components of photonic circuits, still requires considerable improvement. Over the past decades, various optical cavities have been utilized to implement next-generation light sources in photonic circuits with low energy, high data traffic, and integrable physical sizes. Nevertheless, it has been difficult to reduce the size of most commercialized cavities beyond the diffraction limit while maintaining high performance. Herein, recent advancements in subwavelength metallic cavities that can improve performance, even with the use of lossy plasmonic modes, are reviewed. The discussion is divided in three parts according to light engineering methods: subwavelength metal-clad cavities engineered using intermediate dielectric cladding; implementation of plasmonic cavities and waveguides using plasmonic crystals; and development of deep-subwavelength plasmonic waveguides and cavities using geometric engineering. A direction for further developments in photonic integrated circuit technology is also discussed, along with its practical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA