Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neuropathol ; 146(5): 685-705, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37740734

RESUMO

Oxidative stress plays an essential role in the development of Parkinson's disease (PD). 8-oxo-7,8-dihydroguanine (8-oxodG, oxidized guanine) is the most abundant oxidative stress-mediated DNA lesion. However, its contributing role in underlying PD pathogenesis remains unknown. In this study, we hypothesized that 8-oxodG can generate novel α-synuclein (α-SYN) mutants with altered pathologic aggregation through a phenomenon called transcriptional mutagenesis (TM). We observed a significantly higher accumulation of 8-oxodG in the midbrain genomic DNA from PD patients compared to age-matched controls, both globally and region specifically to α-SYN. In-silico analysis predicted that forty-three amino acid positions can contribute to TM-derived α-SYN mutation. Here, we report a significantly higher load of TM-derived α-SYN mutants from the midbrain of PD patients compared to controls using a sensitive PCR-based technique. We found a novel Serine42Tyrosine (S42Y) α-SYN as the most frequently detected TM mutant, which incidentally had the highest predicted aggregation score amongst all TM variants. Immunohistochemistry of midbrain sections from PD patients using a newly characterized antibody for S42Y identified S42Y-laden Lewy bodies (LB). We further demonstrated that the S42Y TM variant significantly accelerates WT α-SYN aggregation by cell and recombinant protein-based assays. Cryo-electron tomography revealed that S42Y exhibits considerable conformational heterogeneity compared to WT fibrils. Moreover, S42Y exhibited higher neurotoxicity compared to WT α-SYN as shown in mouse primary cortical cultures and AAV-mediated overexpression in the substantia nigra of C57BL/6 J mice. To our knowledge, this is the first report describing the possible contribution of TM-generated mutations of α-SYN to LB formation and PD pathogenesis.


Assuntos
Doença de Parkinson , Humanos , Animais , Camundongos , Doença de Parkinson/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Camundongos Endogâmicos C57BL , Mutagênese , DNA
2.
Eur J Neurosci ; 52(4): 3242-3255, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31958881

RESUMO

Animal models of human diseases are crucial experimental tools to investigate the mechanisms involved in disease pathogenesis and to develop new therapies. In spite of the numerous animal models currently available that reproduce several neuropathological features of Parkinson disease (PD), it is challenging to have one that consistently recapitulates human PD conditions in both motor behaviors and biochemical pathological outcomes. Given that, we have implemented a new paradigm to expose rats to a chronic low dose of paraquat (PQ), using osmotic minipumps and characterized the developed pathologic features over time. The PQ exposure paradigm used lead to a rodent model of PD depicting progressive nigrostriatal dopaminergic neurodegeneration, characterized by a 41% significant loss of dopaminergic neuron in the substantia nigra pars compacta (SNpc), a significant decrease of 18% and 40% of dopamine levels in striatum at week 5 and 8, respectively, and a significant 1.5-fold decrease in motor performance. We observed a significant increase of microglia activation state, sustained levels of α-synucleinopathy and increased oxidative stress markers in the SNpc. In summary, this is an explorative study that allowed to characterize an improved PQ-based rat model that recapitulates cardinal features of PD and may represent an attractive tool to investigate several mechanisms underlying the various aspects of PD pathogenesis as well as for the validation of the efficacy of new therapeutic approaches that targets different mechanisms involved in PD neurodegeneration.


Assuntos
Paraquat , Doença de Parkinson , Animais , Corpo Estriado , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Paraquat/toxicidade , Parte Compacta da Substância Negra , Ratos , Substância Negra
3.
Chembiochem ; 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700982

RESUMO

Aptameric sensors can bind molecular targets and produce output signals, a phenomenon that is used in bioassays. In some cases, it is important to distinguish between monomeric and oligomeric forms of a target. Here, we propose a strategy to convert a monomer/oligomer-nonselective sensor into an oligomer-selective sensor. We designed an aptazyme that produced a high fluorescent output in the presence of oligomeric α-synuclein (a molecular marker of Parkinson's disease) but not its monomeric form. The strategy is potentially useful in the design of point-of-care tests for the diagnosis of neurodegenerative diseases.

4.
Anal Chem ; 89(24): 13044-13048, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29172450

RESUMO

Alpha-synuclein (α-SYN) is a central molecule in Parkinson's disease pathogenesis. Despite several studies, the molecular nature of endogenous α-SYN especially in human brain samples is still not well understood due to the lack of reliable methods and the limited amount of biospecimens. Here, we introduce α-SYN single-molecule pull-down (α-SYN SiMPull) assay combined with in vivo protein crosslinking to count individual α-SYN protein and assess its native oligomerization states from biological samples including human postmortem brains. This powerful single-molecule assay can be highly useful in diagnostic applications using various specimens for neurodegenerative diseases including Alzheimer's disease and Parkinson's disease.


Assuntos
Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , alfa-Sinucleína/análise , Células Cultivadas , Células HEK293 , Humanos , Doenças Neurodegenerativas/diagnóstico , alfa-Sinucleína/metabolismo
5.
J Neuroinflammation ; 13(1): 137, 2016 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-27260166

RESUMO

BACKGROUND: Histamine is an amine widely known as a peripheral inflammatory mediator and as a neurotransmitter in the central nervous system. Recently, it has been suggested that histamine acts as an innate modulator of microglial activity. Herein, we aimed to disclose the role of histamine in microglial phagocytic activity and reactive oxygen species (ROS) production and to explore the consequences of histamine-induced neuroinflammation in dopaminergic (DA) neuronal survival. METHODS: The effect of histamine on phagocytosis was assessed both in vitro by using a murine N9 microglial cell line and primary microglial cell cultures and in vivo. Cells were exposed to IgG-opsonized latex beads or phosphatidylserine (PS) liposomes to evaluate Fcγ or PS receptor-mediated microglial phagocytosis, respectively. ROS production and protein levels of NADPH oxidases and Rac1 were assessed as a measure of oxidative stress. DA neuronal survival was evaluated in vivo by counting the number of tyrosine hydroxylase-positive neurons in the substantia nigra (SN) of mice. RESULTS: We found that histamine triggers microglial phagocytosis via histamine receptor 1 (H1R) activation and ROS production via H1R and H4R activation. By using apocynin, a broad NADPH oxidase (Nox) inhibitor, and Nox1 knockout mice, we found that the Nox1 signaling pathway is involved in both phagocytosis and ROS production induced by histamine in vitro. Interestingly, both apocynin and annexin V (used as inhibitor of PS-induced phagocytosis) fully abolished the DA neurotoxicity induced by the injection of histamine in the SN of adult mice in vivo. Blockade of H1R protected against histamine-induced Nox1 expression and death of DA neurons in vivo. CONCLUSIONS: Overall, our results highlight the relevance of histamine in the modulation of microglial activity that ultimately may interfere with neuronal survival in the context of Parkinson's disease (PD) and, eventually, other neurodegenerative diseases which are accompanied by microglia-induced neuroinflammation. Importantly, our results also open promising new perspectives for the therapeutic use of H1R antagonists to treat or ameliorate neurodegenerative processes.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Agonistas dos Receptores Histamínicos/toxicidade , Histamina/toxicidade , Microglia/efeitos dos fármacos , Receptores Histamínicos H1/metabolismo , Animais , Animais Recém-Nascidos , Anexina A5/metabolismo , Encéfalo/citologia , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/patologia , Histamínicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , Fagocitose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Brain ; 138(Pt 12): 3610-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26490328

RESUMO

Currently there is no neuroprotective or neurorestorative therapy for Parkinson's disease. Here we report that transient receptor potential vanilloid 1 (TRPV1) on astrocytes mediates endogenous production of ciliary neurotrophic factor (CNTF), which prevents the active degeneration of dopamine neurons and leads to behavioural recovery through CNTF receptor alpha (CNTFRα) on nigral dopamine neurons in both the MPP(+)-lesioned or adeno-associated virus α-synuclein rat models of Parkinson's disease. Western blot and immunohistochemical analysis of human post-mortem substantia nigra from Parkinson's disease suggests that this endogenous neuroprotective system (TRPV1 and CNTF on astrocytes, and CNTFRα on dopamine neurons) might have relevance to human Parkinson's disease. Our results suggest that activation of astrocytic TRPV1 activates endogenous neuroprotective machinery in vivo and that it is a novel therapeutic target for the treatment of Parkinson's disease.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neuroproteção , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Substância Negra/metabolismo , Animais , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Feminino , Humanos , Regeneração Nervosa , Doença de Parkinson/fisiopatologia , Ratos , Substância Negra/citologia , Substância Negra/patologia , Canais de Cátion TRPV/metabolismo
7.
J Neurochem ; 129(3): 527-38, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24444419

RESUMO

Abnormal autophagy may contribute to neurodegeneration in Parkinson's disease (PD). However, it is largely unknown how autophagy is dysregulated by oxidative stress (OS), one of major pathogenic causes of PD. We recently discovered the potential autophagy regulator gene family including Tnfaip8/Oxi-α, which is a mammalian target of rapamycin (mTOR) activator down-regulated by OS in dopaminergic neurons (J. Neurochem., 112, 2010, 366). Here, we demonstrate that the OS-induced Tnfaip8 l1/Oxi-ß could increase autophagy by a unique mechanism that increases the stability of tuberous sclerosis complex 2 (TSC2), a critical negative regulator of mTOR. Tnfaip8 l1/Oxi-ß and Tnfaip8/Oxi-α are the novel regulators of mTOR acting in opposition in dopaminergic (DA) neurons. Specifically, 6-hydroxydopamine (6-OHDA) treatment up-regulated Tnfaip8 l1/Oxi-ß in DA neurons, thus inducing autophagy, while knockdown of Tnfaip8 l1/Oxi-ß prevented significantly activation of autophagic markers by 6-OHDA. FBXW5 was identified as a novel binding protein for Tnfaip8 l1/Oxi-ß. FBXW5 is a TSC2 binding receptor within CUL4 E3 ligase complex, and it promotes proteasomal degradation of TSC2. Thus, Tnfaip8 l1/Oxi-ß competes with TSC2 to bind FBXW5, increasing TSC2 stability by preventing its ubiquitination. Our data show that the OS-induced Tnfaip8 l1/Oxi-ß stabilizes TSC2 protein, decreases mTOR phosphorylation, and enhances autophagy. Therefore, altered regulation of Tnfaip8 l1/Oxi-ß may contribute significantly to dysregulated autophagy observed in dopaminergic neurons under pathogenic OS condition. Dysfunctional autophagy is frequently observed in post-mortem brains of patients and animal models of Parkinson's disease. In dopaminergic neurons of the 6-hydroxydopamine (6-OHDA) model, oxidative stress induces Tnfaip8 l1/Oxi-ß, which results in increased autophagy by its exclusive binding with FBXW5 to stabilize TSC2. Thus, altered regulation of Tnfaip8 l1/Oxi-ß may contribute to dysregulated autophagy in dopaminergic neurons under pathogenic oxidative stress, implicating both Oxi-ß and FBXW5 as potential intervention targets for dysfunctional autophagy in dopaminergic neurons under oxidative stress.


Assuntos
Autofagia , Neurônios Dopaminérgicos/metabolismo , Proteínas F-Box/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transtornos Parkinsonianos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Western Blotting , Linhagem Celular , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Microscopia Confocal , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/fisiologia , Ligação Proteica , Ratos , Transfecção , Proteína 2 do Complexo Esclerose Tuberosa
8.
Hum Mol Genet ; 21(15): 3474-88, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22589249

RESUMO

Huntington's disease (HD) is an incurable neurological disorder caused by an abnormal glutamine repeat expansion in the huntingtin (Htt) protein. In the present studies, we investigated the role of Transducers of Regulated cAMP response element-binding (CREB) protein activity (TORCs) in HD, since TORCs play an important role in the expression of the transcriptional co-regulator peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), whose expression is impaired in HD. We found significantly decreased TORC1 expression levels in STHdhQ111 cells expressing mutant Htt, in the striatum of NLS-N171-82Q, R6/2 and HdhQ111 HD transgenic mice and in postmortem striatal tissue from HD patients. TORC1 overexpression in wild-type (WT) and Htt striatal cells increased CREB mRNA and protein levels, PGC-1α promoter activity, mRNA expression of the PGC-1α, NRF-1, Tfam and CytC genes, mitochondrial DNA content, mitochondrial activity and mitochondrial membrane potential. TORC1 overexpression also increased the resistance of striatal cells to 3-nitropropionic (3-NP) acid-mediated toxicity. In cultured WT and mutant Htt striatal cells, small hairpin RNA-mediated TORC1 knockdown resulted in decreased PGC-1α expression and increased susceptibility to 3-NP-induced toxicity. Overexpression of PGC-1α partially prevented TORC1 knockdown-mediated increased susceptibility of Htt striatal cells to 3-NP. Specific knockdown of TORC1 in the striatum of NLS-N171-82Q HD transgenic mice induced neurodegeneration. Lastly, knockdown of Htt prevents transcriptional repression of TORC1 and CREB in Htt striatal cells. These findings show that impaired expression and function of TORC1, which results in a reduction in PGC-1α, plays an important role in mitochondrial dysfunction in HD.


Assuntos
Doença de Huntington/genética , Doença de Huntington/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Proteína Huntingtina , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
Methods Mol Biol ; 2761: 81-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427231

RESUMO

The epigenome, consisting of chemical modifications to DNA and histone proteins, can alter gene expression. Clustered regularly interspaced short palindromic repeats/dead CRISPR-associated protein 9 (CRISPR/dCas9) systems enable precise target gene-specific gene modulation by attaching different "effector" domains to the dCas9 protein to activate or repress specific genes. CRISPR/dCas9-SunTag is an improved system version, allowing more efficient and precise gene activation or repression by recruiting multiple copies of the protein of interest. A CRISPR/dCas9-SunTag-based modular epigenetic toolkit was developed, enabling gene-specific epigenetic architecture modulation. This protocol generated a stable SH-SY5Y cell line expressing the CRISPR/dCas9-SunTag-JARID1A system to study H3K4Me3-mediated promoter regulation at a 200-400 bp of fine resolution. The procedure involved designing sgRNAs, subcloning dCas9-5XGCN4 into pLvx-DsRed, validating epigenetic mark changes with ChIP, and validating gene expression changes with RT-qPCR. This epigenetic toolkit is valuable for researchers to understand the relationship between gene-specific epigenetic modifications and gene expression.


Assuntos
Sistemas CRISPR-Cas , Neuroblastoma , Humanos , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , RNA Guia de Sistemas CRISPR-Cas , Neuroblastoma/genética , Epigênese Genética
10.
Nat Aging ; 4(3): 364-378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491288

RESUMO

Age is the primary risk factor for Parkinson's disease (PD), but how aging changes the expression and regulatory landscape of the brain remains unclear. Here we present a single-nuclei multiomic study profiling shared gene expression and chromatin accessibility of young, aged and PD postmortem midbrain samples. Combined multiomic analysis along a pseudopathogenesis trajectory reveals that all glial cell types are affected by age, but microglia and oligodendrocytes are further altered in PD. We present evidence for a disease-associated oligodendrocyte subtype and identify genes lost over the aging and disease process, including CARNS1, that may predispose healthy cells to develop a disease-associated phenotype. Surprisingly, we found that chromatin accessibility changed little over aging or PD within the same cell types. Peak-gene association patterns, however, are substantially altered during aging and PD, identifying cell-type-specific chromosomal loci that contain PD-associated single-nucleotide polymorphisms. Our study suggests a previously undescribed role for oligodendrocytes in aging and PD.


Assuntos
Doença de Parkinson , Humanos , Idoso , Doença de Parkinson/genética , Multiômica , Mesencéfalo/metabolismo , Microglia/metabolismo , Núcleo Solitário/metabolismo , Cromatina
11.
Artigo em Inglês | MEDLINE | ID: mdl-38760935

RESUMO

SIGNIFICANCE: The NADPH oxidase (NOX) enzyme family, located in the central nervous system (CNS), is recognized as a source of reactive oxygen species (ROS) in the brain. Despite its importance in cellular processes, excessive ROS generation leads to cell death and is involved in the pathogenesis of neurodegenerative disorders. RECENT ADVANCES: NOX enzymes contribute to the development of neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and stroke, highlighting their potential as targets for future therapeutic development. This review will discuss NOX's contribution and therapeutic targeting potential in neurodegenerative diseases, focusing on PD, AD, ALS, and Stroke. CRITICAL ISSUES: Homeostatic and physiological levels of ROS are crucial for regulating several processes, such as development, memory, neuronal signaling, and vascular homeostasis. However, NOX-mediated excessive ROS generation is deeply involved in the damage of DNA, proteins, and lipids, leading to cell death in the pathogenesis of a wide range of diseases, namely neurodegenerative diseases. FUTURE DIRECTIONS: It is essential to understand the role of NOX homologs in neurodegenerative disorders and the pathological mechanisms undergoing neurodegeneration mediated by increased levels of ROS. This further knowledge will allow the development of new specific NOX inhibitors and their application for neurodegenerative disease therapeutics.

12.
J Neurosci ; 32(42): 14465-77, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077033

RESUMO

Accumulation of misfolded α-synuclein is the pathological hallmark of Parkinson's disease (PD). Nevertheless, little is known about the mechanism contributing to α-synuclein aggregation and its further toxicity to dopaminergic neurons. Since oxidative stress can increase the expression and aggregation levels of α-synuclein, NADPH oxidases (Noxs), which are responsible for reactive oxygen species generation, could be major players in α-synucleinopathy. Previously, we demonstrated that Nox1 is expressed in dopaminergic neurons of the PD animal models as well as postmortem brain tissue of PD patients, and is responsible for oxidative stress and subsequent neuronal degeneration. Here, using paraquat (PQ)-based in vitro and in vivo PD models, we show that Nox1 has a crucial role in modulating the behavior of α-synuclein expression and aggregation in dopaminergic neurons. We observed in differentiated human dopaminergic cells that Nox1 and α-synuclein expressions are increased under PQ exposure. Nox1 knockdown significantly reduced both α-synuclein expression and aggregation, supporting the role of Nox1 in this process. Furthermore, in rats exposed to PQ, the selective knockdown of Nox1 in the substantia nigra, using adeno-associated virus encoding Nox1-specific shRNA, largely attenuated the PQ-mediated increase of α-synuclein and ubiquitin expression levels as well as α-synuclein aggregates (proteinase K resistant) and A11 oligomers. Significant reductions in oxidative stress level and dopaminergic neuronal loss were also observed. Our data reveal a new mechanism by which α-synuclein becomes a neuropathologic protein through Nox1-mediated oxidative stress. This finding may be used to generate new therapeutic interventions that slower the rate of α-synuclein aggregation and the progression of PD pathogenesis.


Assuntos
NADPH Oxidases/fisiologia , Doença de Parkinson/metabolismo , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/toxicidade , Animais , Linhagem Celular Transformada , Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Masculino , NADPH Oxidase 1 , NADPH Oxidases/biossíntese , NADPH Oxidases/genética , Doença de Parkinson/enzimologia , Doença de Parkinson/patologia , Ratos , Ratos Wistar , Células-Tronco/metabolismo , Células-Tronco/patologia , alfa-Sinucleína/biossíntese
13.
J Neurochem ; 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24372178

RESUMO

Abnormal autophagy may contribute to neurodegeneration in Parkinson's disease (PD). However, it is largely unknown how autophagy is dysregulated by oxidative stress (OS), one of major pathogenic causes of PD. We recently discovered the potential autophagy regulator gene family including Tnfaip8/Oxi-α, which is an mTOR activator downregulated by OS in dopaminergic neurons (Choi et al., 2010). Here we demonstrate that the OS-induced Tnfaip8l1/Oxi-ß could increase autophagy by a unique mechanism that increases the stability of TSC2, a critical negative regulator of mTOR. Tnfaip8l1/Oxi-ß and Tnfaip8/Oxi-α are the novel regulators of mTOR acting in opposition in DA neurons. Specifically, 6-hydroxydopamine (6-OHDA) treatment upregulated Tnfaip8l1/Oxi-ß in DA neurons, thus inducing autophagy, while knockdown of Tnfaip8l1/Oxi-ß prevented significantly activation of autophagic markers by 6-OHDA. FBXW5 was identified as a novel binding protein for Tnfaip8l1/Oxi-ß. FBXW5 is a TSC2 binding receptor within CUL4 E3 ligase complex, and it promotes proteasomal degradation of TSC2. Thus, Tnfaip8l1/Oxi-ß competes with TSC2 to bind FBXW5, increasing TSC2 stability by preventing its ubiquitination. Our data show that the OS-induced Tnfaip8l1/Oxi-ß stabilizes TSC2 protein, decreases mTOR phosphorylation and enhances autophagy. Therefore, altered regulation of Tnfaip8l1/Oxi-ß may contribute significantly to dysregulated autophagy observed in dopaminergic neurons under pathogenic OS condition. This article is protected by copyright. All rights reserved.

14.
Biochem Biophys Res Commun ; 437(3): 380-5, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23827392

RESUMO

Our previous works have shown that the (NADPH) oxidase (Nox) enzyme, in particular Nox1, plays an important role in oxidative stress and subsequent dopaminergic cell death elicited by paraquat (PQ). In non-neuronal and glial cells, protein kinase C δ (PKCδ) shows the ability to regulate the activity of the Nox system. Herein we aimed to investigate if also in dopaminergic neurons exposed to PQ, PKCδ can regulate Nox1 expression. The chemical inhibitor, rottlerin, and short interference RNA (siRNA) were used to inhibit or selectively knockdown PKCδ, respectively. The studies were performed using the immortalized rat mesencephalic dopaminergic cell line (N27 cells) exposed to PQ, after pre-incubation with rottlerin or transfected with PKCδ-siRNA. We observed that inhibition or knockdown of PKCδ significantly reduced PQ induced Nox1 transcript and protein levels, ROS generation and subsequent dopaminergic cell death. The results suggest that PKCδ plays a role in the regulation of Nox1-mediated oxidative stress elicited by PQ and could have a role in the pathogenesis of Parkinson's disease.


Assuntos
Dopamina/fisiologia , NADH NADPH Oxirredutases/biossíntese , Neurônios/enzimologia , Paraquat/farmacologia , Proteína Quinase C-delta/fisiologia , Acetofenonas/farmacologia , Animais , Benzopiranos/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Transformada , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/genética , Técnicas de Silenciamento de Genes , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/biossíntese , Ratos , Espécies Reativas de Oxigênio/metabolismo
15.
J Immunol ; 187(12): 6508-17, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22079984

RESUMO

This study examined whether the cannabinoid receptor type 1 (CB(1)) receptor contributes to the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. MPTP induced significant loss of nigrostriatal DA neurons and microglial activation in the substantia nigra (SN), visualized with tyrosine hydroxylase or macrophage Ag complex-1 immunohistochemistry. Real-time PCR, ELISA, Western blotting, and immunohistochemistry disclosed upregulation of proinflammatory cytokines, activation of microglial NADPH oxidase, and subsequent reactive oxygen species production and oxidative damage of DNA and proteins in MPTP-treated SN, resulting in degeneration of DA neurons. Conversely, treatment with nonselective cannabinoid receptor agonists (WIN55,212-2 and HU210) led to increased survival of DA neurons in the SN, their fibers and dopamine levels in the striatum, and improved motor function. This neuroprotection by cannabinoids was accompanied by suppression of NADPH oxidase reactive oxygen species production and reduced expression of proinflammatory cytokines from activated microglia. Interestingly, cannabinoids protected DA neurons against 1-methyl-4-phenyl-pyridinium neurotoxicity in cocultures of mesencephalic neurons and microglia, but not in neuron-enriched mesencephalic cultures devoid of microglia. The observed neuroprotection and inhibition of microglial activation were reversed upon treatment with CB(1) receptor selective antagonists AM251 and/or SR14,716A, confirming the involvement of the CB(1) receptor. The present in vivo and in vitro findings clearly indicate that the CB(1) receptor possesses anti-inflammatory properties and inhibits microglia-mediated oxidative stress. Our results collectively suggest that the cannabinoid system is beneficial for the treatment of Parkinson's disease and other disorders associated with neuroinflammation and microglia-derived oxidative damage.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Corpo Estriado/imunologia , Inibidores do Crescimento/fisiologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Neurotoxinas/efeitos adversos , Receptor CB1 de Canabinoide/fisiologia , Substância Negra/imunologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/antagonistas & inibidores , Animais , Benzoxazinas/farmacologia , Células Cultivadas , Técnicas de Cocultura , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopaminérgicos/administração & dosagem , Dopaminérgicos/efeitos adversos , Dronabinol/análogos & derivados , Dronabinol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Morfolinas/farmacologia , Naftalenos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/patologia , Neurotoxinas/administração & dosagem , Transtornos Parkinsonianos/imunologia , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/prevenção & controle , Receptor CB1 de Canabinoide/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
16.
Mediators Inflamm ; 2013: 370526, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23853428

RESUMO

The present study examined whether matrix metalloproteinase-3 (MMP-3) participates in the loss of dopaminergic (DA) neurons in the nigrostriatal pathway in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease with blood brain barrier (BBB) damage and infiltration of peripheral immune cells. Tyrosine hydroxylase (TH) immunostaining of brain sections from MPTP-treated mice showed that MPTP induced significant degeneration of nigrostriatal DA neurons. Moreover, FITC-labeled albumin detection and immunostaining revealed that MPTP caused damage to the BBB and increased the number of ED-1- and CD-3-immunopositive cells in the substantia nigra (SN). Genetic ablation of MMP-3 reduced the nigrostriatal DA neuron loss and improved motor function. This neuroprotective effect afforded by MMP-3 deletion was associated with the suppression of BBB disruption and a decrease in the number of ED-1- and CD-3-immunopositive cells in the SN. These data suggest that MMP-3 could play a crucial role in neurodegenerative diseases such as PD in which BBB damage and neuroinflammation are implicated.


Assuntos
Barreira Hematoencefálica/patologia , Inflamação/patologia , Metaloproteinase 3 da Matriz/metabolismo , Neurônios/metabolismo , Doença de Parkinson/patologia , Substância Negra/patologia , Animais , Barreira Hematoencefálica/metabolismo , Densitometria , Modelos Animais de Doenças , Dopamina/metabolismo , Regulação da Expressão Gênica , Imuno-Histoquímica , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Doença de Parkinson/metabolismo , Fagocitose , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Nutrients ; 15(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836456

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory disease characterized by dry and itchy skin. Recently, it has been reported that oxidative stress is involved in skin diseases, possibly including AD. Vitamin C, also referred to as ascorbic acid, is a vital water-soluble compound that functions as an essential nutrient. It plays a significant role as both an antioxidant and an additive in various pharmaceutical and food products. Despite the fact that vitamin C is easily oxidized, we have developed NXP081, a single-stranded DNA aptamer that selectively binds to vitamin C, thereby inhibiting its oxidation. The objective of the current research was to examine the impact of NXP081, an animal model of AD induced by 2,4-dinitrofluorobenzene (DNFB). The experimental drug NXP081, when taken orally, showed promising results in reducing inflammation and improving the skin conditions caused by DNFB. The administration of NXP081 resulted in a significant reduction in ear swelling and a noticeable improvement in the appearance of skin lesions. In addition, the administration of NXP081 resulted in a significant decrease in the migration of mast cells in the skin lesions induced by DNFB. Moreover, NXP081 inhibited the production of interferon-gamma (IFN-γ) in CD4+ T cells that were activated and derived from the lymph nodes. Our findings provide useful information about the anti-inflammatory effect of NXP081 on AD.


Assuntos
Aptâmeros de Nucleotídeos , Dermatite Atópica , Dermatopatias , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Dinitrofluorbenzeno/efeitos adversos , Camundongos Endogâmicos BALB C , Aptâmeros de Nucleotídeos/efeitos adversos , Ácido Ascórbico/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Dermatopatias/metabolismo , Vitaminas/farmacologia , Pele/metabolismo , Citocinas/metabolismo
18.
Nat Commun ; 14(1): 4283, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463889

RESUMO

The nuclear receptor, Nurr1, is critical for both the development and maintenance of midbrain dopamine neurons, representing a promising molecular target for Parkinson's disease (PD). We previously identified three Nurr1 agonists (amodiaquine, chloroquine and glafenine) that share an identical chemical scaffold, 4-amino-7-chloroquinoline (4A7C), suggesting a structure-activity relationship. Herein we report a systematic medicinal chemistry search in which over 570 4A7C-derivatives were generated and characterized. Multiple compounds enhance Nurr1's transcriptional activity, leading to identification of an optimized, brain-penetrant agonist, 4A7C-301, that exhibits robust neuroprotective effects in vitro. In addition, 4A7C-301 protects midbrain dopamine neurons in the MPTP-induced male mouse model of PD and improves both motor and non-motor olfactory deficits without dyskinesia-like behaviors. Furthermore, 4A7C-301 significantly ameliorates neuropathological abnormalities and improves motor and olfactory dysfunctions in AAV2-mediated α-synuclein-overexpressing male mouse models. These disease-modifying properties of 4A7C-301 may warrant clinical evaluation of this or analogous compounds for the treatment of patients with PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Masculino , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Encéfalo/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo
19.
J Biol Chem ; 286(16): 14168-77, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21330369

RESUMO

Evidence suggests that the C-terminal truncation of α-synuclein is equally important as aggregation of α-synuclein in Parkinson disease (PD). Our previous results showed that an endopeptidase, matrix metalloproteinase-3 (MMP3), was induced and activated in dopaminergic (DA) cells upon stress conditions. Here, we report that MMP3 cleaved α-synuclein in vitro and in vivo and that α-synuclein and MMP3 were co-localized in Lewy bodies (LB) in the postmortem brains of PD patients. Incubation of α-synuclein with the catalytic domain of MMP3 (cMMP3) resulted in generation of several peptides, and the peptide profiles of WT α-synuclein (WTsyn) and A53T mutant (A53Tsyn) were different. Combined analysis using mass spectrometry and N-terminal determination revealed that MMP3 generated C-terminally truncated peptides of amino acids 1-78, 1-91, and 1-93 and that A53Tsyn produced significantly higher quantities of these peptides. Similar sizes of peptides were detected in N27 DA cells under oxidative stress and RNA interference to knock down MMP3-attenuated peptide generation. Co-overexpression of cMMP3 with either WTsyn or A53Tsyn led to a reduction in Triton X-100-insoluble aggregates and an increase in protofibril-like small aggregates. In addition, overexpression of the 1-93-amino acid peptide in the substantia nigra led to DA neuronal loss without LB-like aggregate formation. The results strongly indicate that MMP3 digestion of α-synuclein in DA neurons plays a pivotal role in the progression of PD through modulation of α-synuclein in aggregation, LB formation, and neurotoxicity.


Assuntos
Dopamina/metabolismo , Regulação Enzimológica da Expressão Gênica , Corpos de Lewy/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Domínio Catalítico , Morte Celular , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/química , Substância Negra/metabolismo
20.
PLoS One ; 17(7): e0272085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35901090

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by inclusions of aggregated α-synuclein (α-Syn). Oxidative stress plays a critical role in nigrostriatal degeneration and is responsible for α-Syn aggregation in PD. Vitamin C or ascorbic acid acts as an effective antioxidant to prevent free radical damage. However, vitamin C is easily oxidized and often loses its physiological activity, limiting its therapeutic potential. The objective of this study was to evaluate whether NXP031, a new compound we developed consisting of Aptamin C and Vitamin C, is neuroprotective against α-synucleinopathy. To model α-Syn induced PD, we stereotactically injected AAV particles overexpressing human α-Syn into the substantia nigra (SN) of mice. One week after AAV injection, NXP031 was administered via oral gavage every day for eight weeks. We found that oral administration of NXP031 ameliorated motor deficits measured by the rotarod test and prevented the loss of nigral dopaminergic neurons caused by WT-α-Syn overexpression in the SN. Also, NXP031 blocked the propagation of aggregated α-Syn into the hippocampus by alleviating oxidative stress. These results indicate that NXP031 can be a potential therapeutic for PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Ácido Ascórbico/farmacologia , Modelos Animais de Doenças , Dopamina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Humanos , Camundongos , Estresse Oxidativo , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA