RESUMO
ABSTRACT: Over the past 10 years, there has been a marked increase in recognition of the interplay between the intestinal microbiome and the hematopoietic system. Despite their apparent distance in the body, a large literature now supports the relevance of the normal intestinal microbiota to steady-state blood production, affecting both hematopoietic stem and progenitor cells as well as differentiated immune cells. Microbial metabolites enter the circulation where they can trigger cytokine signaling that influences hematopoiesis. Furthermore, the state of the microbiome is now recognized to affect outcomes from hematopoietic stem cell transplant, immunotherapy, and cellular therapies for hematologic malignancies. Here we review the mechanisms by which microbiotas influence hematopoiesis in development and adulthood as well as the avenues by which microbiotas are thought to impact stem cell transplant engraftment, graft-versus-host disease, and efficacy of cell and immunotherapies. We highlight areas of future research that may lead to reduced adverse effects of antibiotic use and improved outcomes for patients with hematologic conditions.
Assuntos
Microbioma Gastrointestinal , Doenças Hematológicas , Hematopoese , Humanos , Doenças Hematológicas/terapia , Doenças Hematológicas/microbiologia , Animais , Transplante de Células-Tronco Hematopoéticas , Doença Enxerto-Hospedeiro/microbiologia , Doença Enxerto-Hospedeiro/terapia , Doença Enxerto-Hospedeiro/imunologiaRESUMO
'Long COVID' affects nearly one in five adults who have had coronavirus disease 2019 (COVID-19), yet the mechanisms underlying this disorder remain poorly understood. In a new study, Cheong et al. show that the epigenetic and transcriptional state of myeloid immune cells and their progenitors are durably altered in patients following severe COVID-19.
Assuntos
COVID-19 , Adulto , Humanos , COVID-19/genética , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Epigênese GenéticaRESUMO
Tumors protect themselves from immune clearance by promoting extramedullary hematopoiesis. A new study in PLOS Biology provides insights into the mechanisms underlying this process, which may hold the key to disrupting generation of the immunosuppressive tumor microenvironment.
Assuntos
Doenças Hematológicas , Hematopoese Extramedular , Neoplasias , Humanos , Fator Inibidor de Leucemia , Interleucina-1alfa , Hematopoese , Microambiente TumoralRESUMO
Recent studies have revealed that the intestinal bacterial microbiome plays an important role in the regulation of hematopoiesis. A correlation between adverse hematologic effects and imbalance of the intestinal microbiome, or dysbiosis, is evident in several human conditions, such as inflammatory bowel disease, obesity, and, critically, in the setting of antibiotic exposure. Here we review the effects of gut dysbiosis on the hematological compartment and our current understanding of the mechanisms through which changes in the bacterial microbiome affect hematopoiesis.
Assuntos
Disbiose/complicações , Microbioma Gastrointestinal , Hematopoese , Animais , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Medula Óssea/fisiologia , Disbiose/microbiologia , Disbiose/fisiopatologia , Microbioma Gastrointestinal/efeitos dos fármacos , Sobrevivência de Enxerto , Hematopoese/genética , Hematopoese/fisiologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/microbiologia , Camundongos , Modelos Imunológicos , Fator 88 de Diferenciação Mieloide/fisiologia , Neutropenia/induzido quimicamente , Proteína Adaptadora de Sinalização NOD1/fisiologia , Distúrbios Nutricionais/complicações , Distúrbios Nutricionais/microbiologia , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Receptores Toll-Like/fisiologiaRESUMO
A unique property of many adult stem cells is their ability to exist in a non-cycling, quiescent state. Although quiescence serves an essential role in preserving stem cell function until the stem cell is needed in tissue homeostasis or repair, defects in quiescence can lead to an impairment in tissue function. The extent to which stem cells can regulate quiescence is unknown. Here we show that the stem cell quiescent state is composed of two distinct functional phases, G0 and an 'alert' phase we term G(Alert). Stem cells actively and reversibly transition between these phases in response to injury-induced systemic signals. Using genetic mouse models specific to muscle stem cells (or satellite cells), we show that mTORC1 activity is necessary and sufficient for the transition of satellite cells from G0 into G(Alert) and that signalling through the HGF receptor cMet is also necessary. We also identify G0-to-G(Alert) transitions in several populations of quiescent stem cells. Quiescent stem cells that transition into G(Alert) possess enhanced tissue regenerative function. We propose that the transition of quiescent stem cells into G(Alert) functions as an 'alerting' mechanism, an adaptive response that positions stem cells to respond rapidly under conditions of injury and stress, priming them for cell cycle entry.
Assuntos
Ciclo Celular/fisiologia , Complexos Multiproteicos/metabolismo , Músculo Esquelético/citologia , Fase de Repouso do Ciclo Celular/fisiologia , Células Satélites de Músculo Esquelético/citologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Ciclo Celular/genética , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/genética , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Fase de Repouso do Ciclo Celular/genética , Células Satélites de Músculo Esquelético/metabolismo , Serina-Treonina Quinases TOR/genéticaRESUMO
Bone marrow suppression is an adverse effect associated with many antibiotics, especially when administered for prolonged treatment courses. Recent advances in our understanding of steady-state hematopoiesis have allowed us to explore the effects of antibiotics on hematopoietic progenitors in detail using a murine model. Antibiotic-treated mice exhibited anemia, thrombocytosis, and leukopenia, with pronounced pan-lymphopenia as demonstrated by flow cytometric analysis of peripheral blood. Bone marrow progenitor analysis revealed depletion of hematopoietic stem cells and multipotent progenitors across all subtypes. Granulocytes and B cells were also diminished in the bone marrow, whereas the number of CD8+ T cells increased. Reductions in progenitor activity were not observed when cells were directly incubated with antibiotics, suggesting that these effects are indirect. Hematopoietic changes were associated with a significant contraction of the fecal microbiome and were partially rescued by fecal microbiota transfer. Further, mice raised in germ-free conditions had hematopoietic abnormalities similar to those seen in antibiotic-treated mice, and antibiotic therapy of germ-free mice caused no additional abnormalities. The effects of antibiotics were phenocopied in Stat1-deficient mice, with no additional suppression by antibiotics in these mice. We conclude that microbiome depletion as a result of broad-spectrum antibiotic treatment disrupts basal Stat1 signaling and alters T-cell homeostasis, leading to impaired progenitor maintenance and granulocyte maturation. Methods to preserve the microbiome may reduce the incidence of antibiotic-associated bone marrow suppression.
Assuntos
Anemia/induzido quimicamente , Antibacterianos/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Leucopenia/induzido quimicamente , Fator de Transcrição STAT1/genética , Trombocitose/induzido quimicamente , Anemia/microbiologia , Anemia/patologia , Anemia/terapia , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/patologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Expressão Gênica , Vida Livre de Germes/efeitos dos fármacos , Vida Livre de Germes/genética , Granulócitos/efeitos dos fármacos , Granulócitos/metabolismo , Granulócitos/patologia , Hematopoese/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Leucopenia/microbiologia , Leucopenia/patologia , Leucopenia/terapia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT1/deficiência , Transdução de Sinais , Trombocitose/microbiologia , Trombocitose/patologia , Trombocitose/terapiaRESUMO
Heterozygous mutations in the transcriptional regulator GATA-2 associate with multilineage immunodeficiency, myelodysplastic syndrome (MDS), and acute myeloid leukemia (AML). The majority of these mutations localize in the zinc finger (ZnF) domains, which mediate GATA-2 DNA binding. Deregulated hematopoiesis with GATA-2 mutation frequently develops in adulthood, yet GATA-2 function in the bone marrow remains unresolved. To investigate this, we conditionally deleted the GATA-2 C-terminal ZnF (C-ZnF) coding sequences in adult mice. Upon Gata2 C-ZnF deletion, we observed rapid peripheral cytopenia, bone marrow failure, and decreased c-Kit expression on hematopoietic progenitors. Transplant studies indicated GATA-2 has a cell-autonomous role in bone marrow hematopoiesis. Moreover, myeloid lineage populations were particularly sensitive to Gata2 hemizygosity, while molecular assays indicated GATA-2 regulates c-Kit expression in multilineage progenitor cells. Enforced c-Kit expression in Gata2 C-ZnF-deficient hematopoietic progenitors enhanced myeloid colony activity, suggesting GATA-2 sustains myelopoiesis via a cell intrinsic role involving maintenance of c-Kit expression. Our results provide insight into mechanisms regulating hematopoiesis in bone marrow and may contribute to a better understanding of immunodeficiency and bone marrow failure associated with GATA-2 mutation.
Assuntos
Anemia Aplástica/genética , Doenças da Medula Óssea/genética , Medula Óssea/patologia , Fator de Transcrição GATA2/genética , Hemoglobinúria Paroxística/genética , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas Proto-Oncogênicas c-kit/deficiência , Deleção de Sequência , Dedos de Zinco/genética , Anemia Aplástica/diagnóstico , Anemia Aplástica/metabolismo , Anemia Aplástica/mortalidade , Animais , Biomarcadores , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/metabolismo , Doenças da Medula Óssea/mortalidade , Transtornos da Insuficiência da Medula Óssea , Osso e Ossos/patologia , Imunoprecipitação da Cromatina , Descalcificação Patológica/genética , Modelos Animais de Doenças , Fator de Transcrição GATA2/química , Fator de Transcrição GATA2/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Frequência do Gene , Genes Reporter , Genótipo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Hemoglobinúria Paroxística/diagnóstico , Hemoglobinúria Paroxística/metabolismo , Hemoglobinúria Paroxística/mortalidade , Sequenciamento de Nucleotídeos em Larga Escala , Imunofenotipagem , Camundongos , Camundongos Knockout , Prognóstico , Células da Side PopulationRESUMO
Lymphocytes and neutrophils are rapidly depleted by systemic infection. Progenitor cells of the haematopoietic system, such as common myeloid progenitors and common lymphoid progenitors, increase the production of immune cells to restore and maintain homeostasis during chronic infection, but the contribution of haematopoietic stem cells (HSCs) to this process is largely unknown. Here we show, using an in vivo mouse model of Mycobacterium avium infection, that an increased proportion of long-term repopulating HSCs proliferate during M. avium infection, and that this response requires interferon-gamma (IFN-gamma) but not interferon-alpha (IFN-alpha) signalling. Thus, the haematopoietic response to chronic bacterial infection involves the activation not only of intermediate blood progenitors but of long-term repopulating HSCs as well. IFN-gamma is sufficient to promote long-term repopulating HSC proliferation in vivo; furthermore, HSCs from IFN-gamma-deficient mice have a lower proliferative rate, indicating that baseline IFN-gamma tone regulates HSC activity. These findings implicate IFN-gamma both as a regulator of HSCs during homeostasis and under conditions of infectious stress. Our studies contribute to a deeper understanding of haematological responses in patients with chronic infections such as HIV/AIDS or tuberculosis.
Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Homeostase/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Tuberculose/imunologia , Animais , Transplante de Medula Óssea , Contagem de Células , Proliferação de Células , Doença Crônica , Homeostase/fisiologia , Interferon-alfa , Interferon gama/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/imunologia , Mycobacterium avium/imunologia , Transdução de Sinais , Tuberculose/sangue , Tuberculose/microbiologiaRESUMO
Interferon gamma (IFNγ) promotes cell division of hematopoietic stem cells (HSCs) without affecting the total HSC number. We postulated that IFNγ stimulates differentiation of HSCs as part of the innate immune response. Here, we report that type II interferon signaling is required, both at baseline and during an animal model of LCMV infection, to maintain normal myeloid development. By separately evaluating myeloid-biased and lymphoid-biased HSC subtypes, we found that myeloid-biased HSCs express higher levels of IFNγ receptor and are specifically activated to divide after recombinant IFNγ exposure in vivo. While both HSC subtypes show increased expression of the transcription factor C/EBPß after infection, only the myeloid-biased HSCs are transiently depleted from the marrow during the type II interferon-mediated immune response to Mycobacterium avium infection, as measured both functionally and phenotypically. These findings indicate that IFNγ selectively permits differentiation of myeloid-biased HSCs during an innate immune response to infection. This represents the first report of a context and a mechanism for discriminate utilization of the alternate HSC subtypes. Terminal differentiation, at the expense of self-renewal, may compromise HSC populations during states of chronic inflammation.
Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Células-Tronco Hematopoéticas/metabolismo , Interferon gama/genética , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Proliferação de Células/fisiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Camundongos Endogâmicos C57BL , Células Mieloides/citologia , Transdução de Sinais/genéticaRESUMO
Hematopoietic stem cells (HSCs) are the progenitors of all blood and immune cells, yet their role in immunity is not well understood. Most studies have focused on the ability of committed lymphoid and myeloid precursors to replenish immune cells during infection. Recent studies, however, have indicated that HSCs also proliferate in response to systemic infection and replenish effector immune cells. Inflammatory signaling molecules including interferons, tumor necrosis factor-α and Toll-like receptors are essential to the HSC response. Observing the biology of HSCs through the lens of infection and inflammation has led to the discovery of an array of immune-mediators that serve crucial roles in HSC regulation and function.
Assuntos
Células-Tronco Hematopoéticas/imunologia , Inflamação/imunologia , Animais , Proliferação de Células , Citocinas/imunologia , Células-Tronco Hematopoéticas/citologia , Humanos , Transdução de Sinais , Receptores Toll-Like/imunologiaRESUMO
Quiescence and differentiation of hematopoietic stem and progenitor cells (HSPC) can be modified by systemic inflammatory cues. Such cues can not only yield short-term changes in HSPCs such as in supporting emergency granulopoiesis but can also promote lasting influences on the HSPC compartment. First, inflammation can be a driver for clonal expansion, promoting clonal hematopoiesis for certain mutant clones, reducing overall clonal diversity, and reshaping the composition of the HSPC pool with significant health consequences. Second, inflammation can generate lasting cell-autonomous changes in HSPCs themselves, leading to changes in the epigenetic state, metabolism, and function of downstream innate immune cells. This concept, termed "trained immunity," suggests that inflammatory stimuli can alter subsequent immune responses leading to improved innate immunity or, conversely, autoimmunity. Both of these concepts have major implications in human health. Here we reviewed current literature about the lasting effects of inflammation on the HSPC compartment and opportunities for future advancement in this fast-developing field.
Assuntos
Células-Tronco Hematopoéticas , Inflamação , Humanos , Inflamação/patologia , Inflamação/imunologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/citologia , Animais , Imunidade Inata , Epigênese Genética , Diferenciação Celular , HematopoeseRESUMO
The proinflammatory cytokine interferon gamma (IFNγ) is upregulated in a variety of infections and contributes to bone marrow failure through hematopoietic stem cell (HSC) activation and subsequent exhaustion. The cell-surface protein, bone marrow stromal antigen 2 (BST2), is a key mediator of this process, because it is induced upon IFN stimulation and required for IFN-dependent HSC activation. To identify the mechanism by which BST2 promotes IFN-dependent HSC activation, we evaluated its role in niche localization, immune cell function, lipid raft formation, and intracellular signaling. Our studies indicated that knockout (KO) of BST2 in a murine model does not disrupt immune cell responses to IFN-inducing mycobacterial infection. Furthermore, intravital imaging studies indicate that BST2 KO does not disrupt localization of HSCs relative to endothelial or osteoblastic niches in the bone marrow. However, using imaging-based flow cytometry, we found that IFNγ treatment shifts the lipid raft polarity of wild-type (WT) but not Bst2-/- hematopoietic stem and progenitor cells (HSPCs). Furthermore, RNAseq analysis, reverse-phase protein array and western blot analysis of HSPCs indicate that BST2 promotes ERK1/2 phosphorylation during IFNγ-mediated stress. Overall, we find that BST2 facilitates HSC division by promoting cell polarization and ERK activation, thus elucidating a key mechanism of IFN-dependent HSPC activation. These findings inform future approaches in the treatment of cancer and bone marrow failure.
RESUMO
Hematologic side effects are associated with prolonged antibiotic exposure in up to 34% of patients. Neutropenia, reported in 10-15% of patients, increases the risk of sepsis and death. Murine studies have established a link between the intestinal microbiota and normal hematopoiesis. We sought to identify predisposing factors, presence of microbiota-derived metabolites, and changes in intestinal microbiota composition in otherwise healthy pediatric patients who developed neutropenia after prolonged courses of antibiotics. In this multi-center study, patients with infections requiring anticipated antibiotic treatment of two or more weeks were enrolled. Stool samples were obtained at the start and completion of antibiotics and at the time of neutropenia. We identified 10 patients who developed neutropenia on antibiotics and 29 controls matched for age, sex, race, and ethnicity. Clinical data demonstrated no association between neutropenia and type of infection or type of antibiotic used; however intensive care unit admission and length of therapy were associated with neutropenia. Reduced intestinal microbiome richness and decreased abundance of Lachnospiraceae family members correlated with neutropenia. Untargeted stool metabolomic profiling revealed several metabolites that were depleted exclusively in patients with neutropenia, including members of the urea cycle pathway, pyrimidine metabolism and fatty acid metabolism that are known to be produced by Lachnospiraceae . Our study confirms a relationship between intestinal microbiota disruption and abnormal hematopoiesis and identifies taxa and metabolites likely to contribute to microbiota-sustained hematopoiesis. As the microbiome is a key determinant of stem cell transplant and immunotherapy outcomes, these findings are likely to be of broad significance. Key Points: Neutropenia occurred in 17% of patients receiving prolonged antibiotic therapy.We found no association between neutropenia and type of infection or class of antibiotic used. Development of neutropenia after prolonged antibiotic treatment was associated with decreased prevalence of Lachnospiraceae and Lachnospiraceae metabolites such as citrulline.
RESUMO
It remains unknown whether and how intestinal stem cells (ISCs) adapt to inflammatory exposure and whether the adaptation leaves scars that will affect their subsequent regeneration. We investigated the consequences of inflammation on Lgr5+ ISCs in well-defined clinically relevant models of acute gastrointestinal graft-versus-host disease (GI GVHD). Utilizing single-cell transcriptomics, as well as organoid, metabolic, epigenomic, and in vivo models, we found that Lgr5+ ISCs undergo metabolic changes that lead to the accumulation of succinate, which reprograms their epigenome. These changes reduced the ability of ISCs to differentiate and regenerate ex vivo in serial organoid cultures and also in vivo following serial transplantation. Furthermore, ISCs demonstrated a reduced capacity for in vivo regeneration despite resolution of the initial inflammatory exposure, demonstrating the persistence of the maladaptive impact induced by the inflammatory encounter. Thus, inflammation imprints the epigenome of ISCs in a manner that persists and affects their sensitivity to adapt to future stress or challenges.
Assuntos
Epigênese Genética , Inflamação , Intestinos , Células-Tronco , Animais , Inflamação/patologia , Inflamação/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Camundongos , Intestinos/citologia , Impressão Genômica , Camundongos Endogâmicos C57BL , Doença Enxerto-Hospedeiro , Regeneração , Diferenciação Celular , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Organoides/metabolismoRESUMO
Analysis of lung alveolar type 2 (AT2) progenitor stem cells has highlighted fundamental mechanisms that direct their differentiation into alveolar type 1 cells (AT1s) in lung repair and disease. However, microRNA (miRNA) mediated post-transcriptional mechanisms which govern this nexus remain understudied. We show here that the let-7 miRNA family serves a homeostatic role in governance of AT2 quiescence, specifically by preventing the uncontrolled accumulation of AT2 transitional cells and by promoting AT1 differentiation to safeguard the lung from spontaneous alveolar destruction and fibrosis. Using mice and organoid models with genetic ablation of let-7a1/let-7f1/let-7d cluster (let-7afd) in AT2 cells, we demonstrate prevents AT1 differentiation and results in aberrant accumulation of AT2 transitional cells in progressive pulmonary fibrosis. Integration of enhanced AGO2 UV-crosslinking and immunoprecipitation sequencing (AGO2-eCLIP) with RNA-sequencing from AT2 cells uncovered the induction of direct targets of let-7 in an oncogene feed-forward regulatory network including BACH1/EZH2 which drives an aberrant fibrotic cascade. Additional analyses by CUT&RUN-sequencing revealed loss of let-7afd hampers AT1 differentiation by eliciting aberrant histone EZH2 methylation which prevents the exit of AT2 transitional cells into terminal AT1s. This study identifies let-7 as a key gatekeeper of post-transcriptional and epigenetic chromatin signals to prevent AT2-driven pulmonary fibrosis.
RESUMO
Haematopoietic stem cells maintain blood production throughout life. While extensively characterised using the laboratory mouse, little is known about how the population is sustained and evolves with age. We isolated stem cells and progenitors from young and old mice, identifying 221,890 somatic mutations genome-wide in 1845 single cell-derived colonies, and used phylogenetic analysis to infer the ontogeny and population dynamics of the stem cell pool. Mouse stem cells and progenitors accrue ~45 somatic mutations per year, a rate only about 2-fold greater than human progenitors despite the vastly different organismal sizes and lifespans. Phylogenetic patterns reveal that stem and multipotent progenitor cell pools are both established during embryogenesis, after which they independently self-renew in parallel over life. The stem cell pool grows steadily over the mouse lifespan to approximately 70,000 cells, self-renewing about every six weeks. Aged mice did not display the profound loss of stem cell clonal diversity characteristic of human haematopoietic ageing. However, targeted sequencing revealed small, expanded clones in the context of murine ageing, which were larger and more numerous following haematological perturbations and exhibited a selection landscape similar to humans. Our data illustrate both conserved features of population dynamics of blood and distinct patterns of age-associated somatic evolution in the short-lived mouse.
RESUMO
Here, we investigate the contribution of long-term hematopoietic stem cells (HSCsLT) to trained immunity (TI) in the setting of chronic autoimmune disease. Using a mouse model of systemic lupus erythematosus (SLE), we show that bone marrow-derived macrophages (BMDMs) from autoimmune mice exhibit hallmark features of TI, including increased Mycobacterium avium killing and inflammatory cytokine production, which are mechanistically linked to increased glycolytic metabolism. We show that HSCs from autoimmune mice constitute a transplantable, long-term reservoir for macrophages that exhibit the functional properties of TI. However, these BMDMs exhibit reduced glycolytic activity and chromatin accessibility at metabolic genes while retaining elevated expression of TI-associated transcriptional regulators. Hence, HSC exposed to autoimmune inflammation can give rise to macrophages in which the functional and metabolic properties of TI are decoupled. Our data support a model in which TI is characterized by a spectrum of molecular and metabolic states driving augmented immune function.
RESUMO
Acute lower gastrointestinal GVHD (aLGI-GVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation. Although the intestinal microbiota is associated with the incidence of aLGI-GVHD, how the intestinal microbiota impacts treatment responses in aLGI-GVHD has not been thoroughly studied. In a cohort of patients with aLGI-GVHD (n = 37), we found that non-response to standard therapy with corticosteroids was associated with prior treatment with carbapenem antibiotics and a disrupted fecal microbiome characterized by reduced abundances of Bacteroides ovatus. In a murine GVHD model aggravated by carbapenem antibiotics, introducing B. ovatus reduced GVHD severity and improved survival. These beneficial effects of Bacteroides ovatus were linked to its ability to metabolize dietary polysaccharides into monosaccharides, which suppressed the mucus-degrading capabilities of colonic mucus degraders such as Bacteroides thetaiotaomicron and Akkermansia muciniphila, thus reducing GVHD-related mortality. Collectively, these findings reveal the importance of microbiota in aLGI-GVHD and therapeutic potential of B. ovatus.
Assuntos
Bacteroides , Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Doença Enxerto-Hospedeiro/microbiologia , Animais , Bacteroides/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Humanos , Feminino , Masculino , Disbiose/microbiologia , Fezes/microbiologia , Transplante de Células-Tronco Hematopoéticas , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Akkermansia , Adulto , Bacteroides thetaiotaomicron/efeitos dos fármacos , Camundongos Endogâmicos BALB CRESUMO
The IFN-inducible immunity-related p47 GTPase Irgm1 has been linked to Crohn disease as well as susceptibility to tuberculosis. Previously we demonstrated that HSC quiescence and function are aberrant in mice lacking Irgm1. To investigate the molecular basis for these defects, we conducted microarray expression profiling of Irgm1-deficient HSCs. Cell-cycle and IFN-response genes are up-regulated in Irgm1(-/-) HSCs, consistent with dysregulated IFN signaling. To test the hypothesis that Irgm1 normally down-regulates IFN signaling in HSCs, we generated Irgm1(-/-)Ifngr1(-/-) and Irgm1(-/-)Stat1(-/-) double-knockout animals. Strikingly, hyperproliferation, self-renewal, and autophagy defects in Irgm1(-/-) HSCs were normalized in double-knockout animals. These defects were also abolished in Irgm1(-/-)Irgm3(-/-) double-knockout animals, indicating that Irgm1 may regulate Irgm3 activity. Furthermore, the number of HSCs was reduced in aged Irgm1(-/-) animals, suggesting that negative feedback inhibition of IFN signaling by Irgm1 is necessary to prevent hyperproliferation and depletion of the stem cell compartment. Collectively, our results indicate that Irgm1 is a powerful negative regulator of IFN-dependent stimulation in HSCs, with an essential role in preserving HSC number and function. The deleterious effects of excessive IFN signaling may explain how hematologic abnormalities arise in patients with inflammatory conditions.
Assuntos
Proteínas de Ligação ao GTP/genética , Células-Tronco Hematopoéticas/metabolismo , Receptores de Interferon/genética , Transdução de Sinais/genética , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Transplante de Medula Óssea , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Proteínas de Ligação ao GTP/deficiência , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Imuno-Histoquímica , Interferons/genética , Interferons/metabolismo , Interferons/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Interferon/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genética , Receptor de Interferon gamaRESUMO
Chimeric antigen receptor (CAR) T cell (CAR-T) therapy represents a revolutionary treatment for patients with relapsed/refractory hematologic malignancies. However, its use can result in significant toxicities, including cytokine release syndrome (CRS), a potentially life-threatening clinical syndrome resulting from the release of proinflammatory cytokines upon T cell activation. In addition, patients who develop CRS often experience prolonged cytopenias, and those with the most severe CRS also have the longest delays in full marrow recovery. Although an association between CRS and delayed bone marrow recovery has been established, the precise mechanism underlying this phenomenon remains unknown. This study was conducted to test our hypothesis that delayed bone marrow recovery following CAR-T therapy is caused by elevation of proinflammatory cytokines, leading to apoptosis and depletion of hematopoietic stem and progenitor cells (HSPCs). SCID-beige mice bearing intraperitoneal CD19+ Raji cell tumors were treated with injection of human CD19.28z CAR T cells. Bone marrow was then harvested for analysis by flow cytometry, and HSPCs were isolated for whole-transcriptome analysis by RNA sequencing. Complete blood counts and serum cytokine levels were measured as well. A second model was developed in which SCID-beige mice were treated with murine IFN-γ (mIFN-γ), murine IL-6 (mIL-6), or both. Bone marrow was harvested, and flow cytometry assays were conducted to evaluate the degree of apoptosis and proliferation on specific HSPC populations. SCID-beige mice bearing intraperitoneal Raji cell tumors that were treated with CAR-T therapy developed CRS, with elevations of several proinflammatory cytokines, including profound elevation of human IFN-γ. Gene set enrichment analysis of RNA sequencing data revealed that genes associated with apoptosis were significantly upregulated in HSPCs from mice that developed CRS. Endothelial protein C receptor (EPCR)-negative HSCs, a subset of HSCs that is poised for terminal differentiation, was found to be specifically decreased in mice that were treated with CAR T cells. Furthermore, HSPCs were found to have increased levels of apoptosis upon treatment with mIFN-γ and mIL-6, whereas short-term HSCs and multipotent progenitors exhibited increases in proliferation with mIFN-γ treatment alone. The results from this study provide evidence that the elevation of proinflammatory cytokines following CAR-T therapy impacts the bone marrow through a combined mechanism: pluripotent HSCs that are exposed to elevated levels of IFN-γ and IL-6 undergo increased cell death, while more committed progenitor cells become more proliferative in response to elevated IFN-γ. These combined effects lead to depleted stores of repopulating HSCs and ultimately cytopenias. © 2023 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.