Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Cell ; 61(4): 520-534, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26853146

RESUMO

Altered energy metabolism is a cancer hallmark as malignant cells tailor their metabolic pathways to meet their energy requirements. Glucose and glutamine are the major nutrients that fuel cellular metabolism, and the pathways utilizing these nutrients are often altered in cancer. Here, we show that the long ncRNA CCAT2, located at the 8q24 amplicon on cancer risk-associated rs6983267 SNP, regulates cancer metabolism in vitro and in vivo in an allele-specific manner by binding the Cleavage Factor I (CFIm) complex with distinct affinities for the two subunits (CFIm25 and CFIm68). The CCAT2 interaction with the CFIm complex fine-tunes the alternative splicing of Glutaminase (GLS) by selecting the poly(A) site in intron 14 of the precursor mRNA. These findings uncover a complex, allele-specific regulatory mechanism of cancer metabolism orchestrated by the two alleles of a long ncRNA.


Assuntos
Glutaminase/genética , Neoplasias/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Alelos , Processamento Alternativo , Metabolismo Energético , Células HCT116 , Humanos , Neoplasias/genética , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo
3.
Metabolites ; 13(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37623843

RESUMO

Obesity in children and adolescents has increased globally. Increased body mass index (BMI) during adolescence carries significant long-term adverse health outcomes, including chronic diseases such as cardiovascular disease, stroke, diabetes, and cancer. Little is known about the metabolic consequences of changes in BMI in adolescents outside of typical clinical parameters. Here, we used untargeted metabolomics to assess changing BMI in male adolescents. Untargeted metabolomic profiling was performed on urine samples from 360 adolescents using UPLC-QTOF-MS. The study includes a baseline of 235 subjects in a discovery set and 125 subjects in a validation set. Of them, a follow-up of 81 subjects (1 year later) as a replication set was studied. Linear regression analysis models were used to estimate the associations of metabolic features with BMI z-score in the discovery and validation sets, after adjusting for age, race, and total energy intake (kcal) at false-discovery-rate correction (FDR) ≤ 0.1. We identified 221 and 16 significant metabolic features in the discovery and in the validation set, respectively. The metabolites associated with BMI z-score in validation sets are glycylproline, citrulline, 4-vinylsyringol, 3'-sialyllactose, estrone sulfate, carnosine, formiminoglutamic acid, 4-hydroxyproline, hydroxyprolyl-asparagine, 2-hexenoylcarnitine, L-glutamine, inosine, N-(2-Hydroxyphenyl) acetamide glucuronide, and galactosylhydroxylysine. Of those 16 features, 9 significant metabolic features were associated with a positive change in BMI in the replication set 1 year later. Histidine and arginine metabolism were the most affected metabolic pathways. Our findings suggest that obesity and its metabolic outcomes in the urine metabolome of children are linked to altered amino acids, lipid, and carbohydrate metabolism. These identified metabolites may serve as biomarkers and aid in the investigation of obesity's underlying pathological mechanisms. Whether these features are associated with the development of obesity, or a consequence of changing BMI, requires further study.

4.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1325-1335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31581091

RESUMO

Bayesian networks is a powerful method for identifying causal relationships among variables. However, as the network size increases, the time complexity of searching the optimal structure grows exponentially. We proposed a novel search algorithm - Fast and Furious Bayesian Network (FFBN). Compared to the existing greedy search algorithm, FFBN uses significantly fewer model configuration rules to determine the causal direction of edges when constructing the Bayesian network, which leads to greatly improved computational speed. We benchmarked the performance of FFBN by reconstructing gene regulatory networks (GRNs) from two DREAM5 challenge datasets: a synthetic dataset and a larger yeast transcriptome dataset. In both datasets, FFBN shows a much faster speed than the existing greedy search algorithm, while maintaining equally good or better performance in recall and precision. We then constructed three whole transcriptome GRNs for primary liver cancer (PL), primary colon cancer (PC) and colon to liver metastasis (CLM) expression data, which the existing greedy search algorithms failed. Three GRNs contain 12,099 common genes. Unprecedentedly, our newly developed FFBN algorithm is able to build up GRNs at a scale larger than 10,000 genes. Using FFBN, we discovered that CLM has its unique cancer molecular mechanisms and shares a certain degree of similarity with both PL and PC.


Assuntos
Neoplasias do Colo , Biologia Computacional/métodos , Redes Reguladoras de Genes/genética , Neoplasias Hepáticas , Algoritmos , Teorema de Bayes , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Transcriptoma/genética
5.
Oncogene ; 40(14): 2621, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33686243

RESUMO

Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, Nuclear LUCAT1 (NLUCAT1), which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.

6.
Metabolites ; 10(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429287

RESUMO

As researchers are increasingly able to collect data on a large scale from multiple clinical and omics modalities, multi-omics integration is becoming a critical component of metabolomics research. This introduces a need for increased understanding by the metabolomics researcher of computational and statistical analysis methods relevant to multi-omics studies. In this review, we discuss common types of analyses performed in multi-omics studies and the computational and statistical methods that can be used for each type of analysis. We pinpoint the caveats and considerations for analysis methods, including required parameters, sample size and data distribution requirements, sources of a priori knowledge, and techniques for the evaluation of model accuracy. Finally, for the types of analyses discussed, we provide examples of the applications of corresponding methods to clinical and basic research. We intend that our review may be used as a guide for metabolomics researchers to choose effective techniques for multi-omics analyses relevant to their field of study.

7.
Genes (Basel) ; 10(10)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557971

RESUMO

Alternatively-activated pathways have been observed in biological experiments in cancer studies, but the concept had not been fully explored in computational cancer system biology. Therefore, an alternatively-activated pathway identification method was proposed and applied to primary breast cancer and breast cancer liver metastasis research using microarray data. Interestingly, the results show that cytokine-cytokine receptor interaction and calcium signaling were significantly enriched under both conditions. TGF beta signaling was found to be the hub in network topology analysis. In total, three types of alternatively-activated pathways were recognized. In the cytokine-cytokine receptor interaction pathway, four active alteration patterns in gene pairs were noticed. Thirteen cytokine-cytokine receptor pairs with inverse activity changes of both genes were verified by the literature. The second type was that some sub-pathways were active under only one condition. For the third type, nodes were significantly active in both conditions, but with different active genes. In the calcium signaling and TGF beta signalingpathways, node E2F5 and E2F4 were significantly active in primary breast cancer and metastasis, respectively. Overall, our study demonstrated the first time using microarray data to identify alternatively-activated pathways in breast cancer liver metastasis. The results showed that the proposed method was valid and effective, which could be helpful for future research for understanding the mechanism of breast cancer metastasis.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Redes e Vias Metabólicas , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sinalização do Cálcio , Citocinas/genética , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Crescimento Transformador beta/metabolismo
8.
Oncogene ; 38(46): 7146-7165, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31417181

RESUMO

Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, NLUCAT1, which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.


Assuntos
Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Estresse Oxidativo/fisiologia , RNA Longo não Codificante/fisiologia , Adenocarcinoma de Pulmão/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/metabolismo , Fenótipo
9.
Nat Commun ; 9(1): 3518, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158520

RESUMO

While erythropoietin (EPO) constitutes the major treatment for anemia, a range of anemic disorders remain resistant to EPO treatment. The need for alternative therapeutic strategies requires the identification of mechanisms that physiologically restrain erythropoiesis. Here we show that P38α restrains erythropoiesis in mouse and human erythroblasts independently of EPO by integrating apoptotic signals during recovery from anemia. P38α deficiency promotes JNK activation through increased expression of Map3k4 via a negative feedback mechanism. JNK prevents Cdk1-mediated phosphorylation and subsequent degradation by Smurf2 of the epigenetic silencer Ezh2. Stabilized Ezh2 silences Bim expression and protects erythroblasts from apoptosis. Thus, we identify P38α/JNK signaling as a molecular brake modulating erythropoiesis through epigenetic silencing of Bim. We propose that inhibition of P38α, by enhancing erythropoiesis in an EPO-independent fashion, may provide an alternative strategy for the treatment of anemia.


Assuntos
Proteína 11 Semelhante a Bcl-2/metabolismo , Eritropoese/fisiologia , Animais , Antígenos CD34/metabolismo , Apoptose/genética , Apoptose/fisiologia , Proteína 11 Semelhante a Bcl-2/genética , Epigênese Genética/genética , Eritroblastos/metabolismo , Eritropoese/genética , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Knockout , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
J Clin Invest ; 120(12): 4273-88, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21084750

RESUMO

The development of effective cancer immunotherapies has been consistently hampered by several factors, including an inability to instigate long-term effective functional antitumor immunity. This is particularly true for immunotherapies that focus on the adoptive transfer of activated or genetically modified mature CD8+ T cells. In this study, we sought to alter and enhance long-term host immunity by genetically modifying, then transplanting, mouse HSCs. We first cloned a previously identified tumor-reactive HLA-DR4-restricted CD4+ TCR specific for the melanocyte differentiation antigen tyrosinase-related protein 1 (Tyrp1), then constructed both a high-expression lentivirus vector and a TCR-transgenic mouse expressing the genes encoding this TCR. Using these tools, we demonstrated that both mouse and human HSCs established durable, high-efficiency TCR gene transfer following long-term transplantation into lethally irradiated mice transgenic for HLA-DR4. Recipients of genetically modified mouse HSCs developed spontaneous autoimmune vitiligo that was associated with the presence of a Th1-polarized memory effector CD4+ T cell population that expressed the Tyrp1-specific TCR. Most importantly, large numbers of CD4+ T cells expressing the Tyrp1-specific TCR were detected in secondary HLA-DR4-transgenic transplant recipients, and these mice were able to destroy subcutaneously administered melanoma cells without the aid of vaccination, immune modulation, or cytokine administration. These results demonstrate the creation of what we believe to be a novel translational model of durable lentiviral gene transfer that results in long-term effective immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Transplante de Células-Tronco Hematopoéticas , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Receptores de Antígenos de Linfócitos T/genética , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Autoimunidade , Linhagem Celular Tumoral , Antígeno HLA-DR4/metabolismo , Humanos , Imunoterapia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Transdução Genética , Vitiligo/genética , Vitiligo/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA