RESUMO
The most common cause of cardiac side effects of pharmaco-therapy is acquired long QT syndrome, which is characterized by abnormal cardiac repolarization and most often caused by direct blockade of the cardiac potassium channel human ether a-go-go-related gene (hERG). However, little is known about therapeutic compounds that target ion channels other than hERG. We have discovered that arsenic trioxide (As(2)O(3)), a very potent antineoplastic compound for the treatment of acute promyelocytic leukemia, is proarrhythmic via two separate mechanisms: a well characterized inhibition of hERG/I(Kr) trafficking and a poorly understood increase of cardiac calcium currents. We have analyzed the latter mechanism in the present study using biochemical and electrophysiological methods. We find that oxidative inactivation of the lipid phosphatase PTEN by As(2)O(3) enhances cardiac calcium currents in the therapeutic concentration range via a PI3Kα-dependent increase in phosphatidylinositol 3,4,5-triphosphate (PIP(3)) production. In guinea pig ventricular myocytes, even a modest reduction in PTEN activity is sufficient to increase cellular PIP(3) levels. Under control conditions, PIP(3) levels are kept low by PTEN and do not affect calcium current amplitudes. Based on pharmacological experiments and intracellular infusion of PIP(3), we propose that in guinea pig ventricular myocytes, PIP(3) regulates calcium currents independently of the protein kinase Akt along a pathway that includes a secondary oxidation-sensitive target. Overall, our report describes a novel form of acquired long QT syndrome where the target modified by As(2)O(3) is an intracellular signaling cascade.
Assuntos
Antineoplásicos/efeitos adversos , Arsenicais/efeitos adversos , Cálcio/metabolismo , Ventrículos do Coração/enzimologia , Síndrome do QT Longo/enzimologia , Miócitos Cardíacos/enzimologia , Óxidos/efeitos adversos , PTEN Fosfo-Hidrolase/metabolismo , Animais , Antineoplásicos/farmacologia , Trióxido de Arsênio , Arsenicais/farmacologia , Células Cultivadas , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Cobaias , Humanos , Síndrome do QT Longo/induzido quimicamente , Oxirredução/efeitos dos fármacos , Óxidos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Ascorbic acid is an essential nutrient commonly regarded as an antioxidant. In this study, we showed that ascorbate at pharmacologic concentrations was a prooxidant, generating hydrogen-peroxide-dependent cytotoxicity toward a variety of cancer cells in vitro without adversely affecting normal cells. To test this action in vivo, normal oral tight control was bypassed by parenteral ascorbate administration. Real-time microdialysis sampling in mice bearing glioblastoma xenografts showed that a single pharmacologic dose of ascorbate produced sustained ascorbate radical and hydrogen peroxide formation selectively within interstitial fluids of tumors but not in blood. Moreover, a regimen of daily pharmacologic ascorbate treatment significantly decreased growth rates of ovarian (P < 0.005), pancreatic (P < 0.05), and glioblastoma (P < 0.001) tumors established in mice. Similar pharmacologic concentrations were readily achieved in humans given ascorbate intravenously. These data suggest that ascorbate as a prodrug may have benefits in cancers with poor prognosis and limited therapeutic options.
Assuntos
Antineoplásicos/administração & dosagem , Ácido Ascórbico/administração & dosagem , Neoplasias/tratamento farmacológico , Oxidantes/administração & dosagem , Pró-Fármacos/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/farmacocinética , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Ácido Ascórbico/metabolismo , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Infusões Intravenosas , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Oxidantes/farmacocinética , Pró-Fármacos/farmacocinéticaRESUMO
The protective antigen (PA) component of the anthrax toxin forms pores within the low pH environment of host endosomes through mechanisms that are poorly understood. It has been proposed that pore formation is dependent on histidine protonation. In previous work, we biosynthetically incorporated 2-fluorohistidine (2-FHis), an isosteric analogue of histidine with a significantly reduced pK(a) ( approximately 1), into PA and showed that the pH-dependent conversion from the soluble prepore to a pore was unchanged. However, we also observed that 2-FHisPA was nonfunctional in the ability to mediate cytotoxicity of CHO-K1 cells by LF(N)-DTA and was defective in translocation through planar lipid bilayers. Here, we show that the defect in cytotoxicity is due to both a defect in translocation and, when bound to the host cellular receptor, an inability to undergo low pH-induced pore formation. Combining X-ray crystallography with hydrogen-deuterium (H-D) exchange mass spectrometry, our studies lead to a model in which hydrogen bonds to the histidine ring are strengthened by receptor binding. The combination of both fluorination and receptor binding is sufficient to block low pH-induced pore formation.
Assuntos
Antígenos de Bactérias/metabolismo , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Histidina/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/química , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/química , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Histidina/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Transporte Proteico , Prótons , Receptores de Superfície Celular/químicaRESUMO
The important and diverse biological functions of adrenergic receptors, a subclass of G protein-coupled receptors (GPCRs), have made the search for compounds that selectively stimulate or inhibit the activity of different adrenergic receptor subtypes an important area of medicinal chemistry. We previously synthesized 2-, 5-, and 6-fluoronorepinehprine (FNE) and 2-, 5-, and 6-fluoroepinephrine (FEPI) and found that 2FNE and 2FEPI were selective beta-adrenergic agonists and that 6FNE and 6FEPI were selective alpha-adrenergic agonists, while 5FNE and 5FEPI were unselective. Agonist potencies correlated well with receptor binding affinities. Here, through a combination of molecular modeling and site-directed mutagenesis, we have identified N293 in the beta(2)-adrenergic receptor as a crucial residue for the selectivity of the receptor for catecholamines fluorinated at different positions.
Assuntos
Epinefrina/análogos & derivados , Epinefrina/farmacologia , Norepinefrina/análogos & derivados , Mutação Puntual/fisiologia , Receptores Adrenérgicos beta 2/metabolismo , Ligação Competitiva/fisiologia , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Norepinefrina/farmacologia , Receptores Adrenérgicos beta 2/genética , Relação Estrutura-Atividade , Especificidade por SubstratoRESUMO
The P2Y(14) receptor, a nucleotide signaling protein, is activated by uridine-5'-diphosphoglucose 1 and other uracil nucleotides. We have determined that the glucose moiety of 1 is the most structurally permissive region for designing analogues of this P2Y(14) agonist. For example, the carboxylate group of uridine-5'-diphosphoglucuronic acid proved to be suitable for flexible substitution by chain extension through an amide linkage. Functionalized congeners containing terminal 2-acylaminoethylamides prepared by this strategy retained P2Y(14) activity, and molecular modeling predicted close proximity of this chain to the second extracellular loop of the receptor. In addition, replacement of glucose with other sugars did not diminish P2Y(14) potency. For example, the [5'']ribose derivative had an EC(50) of 0.24muM. Selective monofluorination of the glucose moiety indicated a role for the 2''- and 6''-hydroxyl groups of 1 in receptor recognition. The beta-glucoside was twofold less potent than the native alpha-isomer, but methylene replacement of the 1''-oxygen abolished activity. Replacement of the ribose ring system with cyclopentyl or rigid bicyclo[3.1.0]hexane groups abolished activity. Uridine-5'-diphosphoglucose also activates the P2Y(2) receptor, but the 2-thio analogue and several of the potent modified-glucose analogues were P2Y(14)-selective.
Assuntos
Agonistas do Receptor Purinérgico P2 , Receptores Purinérgicos P2/metabolismo , Relação Estrutura-Atividade , Nucleotídeos de Uracila/química , Nucleotídeos de Uracila/farmacologia , Uridina Difosfato Glucose/análogos & derivados , Animais , Células COS , Chlorocebus aethiops , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Receptores Purinérgicos P2/química , Fosfolipases Tipo C/metabolismo , Nucleotídeos de Uracila/síntese químicaRESUMO
John W. Daly was engaged in groundbreaking basic research for nearly 50 years at NIH in Bethesda, Maryland. A primary focus of his research included the discovery, structure elucidation, synthesis and pharmacology of alkaloids and other biologically active natural products. However, he earned further acclaim in other areas that included the investigation of the structure-activity relationships for agonists/antagonists at adenosine, adrenergic, histamine, serotonin, and acetylcholine receptors. In addition he was a pioneer in studies of the modulation and functional relationships for systems involving calcium, cyclic nucleotides, ion channels and phospholipids and in the mechanism of actions of caffeine and other xanthines.
RESUMO
In order to investigate crystallographically the mechanism of inhibition of cysteine protease by alpha-methyl-gamma,gamma-diphenylallenecarboxylic acid ethyl ester 3, a cysteine protease inhibitor having in vivo stability, we synthesized N-(alpha-methyl-gamma,gamma-diphenylallenecarbonyl)-L-phenylalanine ethyl ester 4. Reaction of 4 with thiophenol, the SH group of which has similar pK(a) value to that of cysteine protease, produced oxygen-mediated radical adducts 6 and 7 in ambient air but did not proceed under oxygen-free conditions. Catalytic activities of two thiol enzymes including cathepsin B were also lowered in the absence of oxygen. These results suggest that cysteine protease can act through an oxygen-dependent radical mechanism.
Assuntos
Amidas/farmacologia , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/farmacologia , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/farmacologia , Animais , Caspase 10/metabolismo , Catálise , Cisteína Endopeptidases/efeitos dos fármacos , Inibidores de Cisteína Proteinase/química , Ésteres , Estrutura Molecular , Oxigênio/química , Oxigênio/metabolismo , Ratos , Compostos de Sulfidrila/químicaRESUMO
Beta-(S-Methyl)thioaspartic acid occurs as a posttranslational modification at position 88 in Escherichia coli ribosomal protein S12, a position that is a mutational hotspot resulting in both antibiotic-resistant and antibiotic-sensitive phenotypes. Critical to research designed to determine the biological function of beta-(S-methyl)thioaspartic acid will be the availability of synthetic beta-(S-methyl)thioaspartic acid as well as derivatives designed for peptide incorporation. We report here the synthesis of beta-(S-methyl)thioaspartic acid and derivatives. The installation of the beta-methylthio moiety into the aspartic acid structure was accomplished by electrophilic sulfenylation of N-protected-l-aspartic acid derivatives with 2,4-dinitrophenyl methyl disulfide. Following this key transformation, we were able to prepare protected beta-(S-methyl)thioaspartic acid derivative suitable for peptide coupling.
Assuntos
Ácido Aspártico/análogos & derivados , Ácido Aspártico/química , Proteínas de Escherichia coli/química , Proteínas Ribossômicas/química , Ácido Aspártico/síntese química , Ácido Aspártico/metabolismo , Proteínas de Escherichia coli/metabolismo , Ésteres , Peptídeos/química , Peptídeos/metabolismo , Processamento Pós-Transcricional do RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Ribossômico/química , Proteínas Ribossômicas/metabolismoRESUMO
An amide linked conjugate of p-aminophenylarsine oxide and biotin is conveniently prepared in a one-pot procedure by the reaction of biotinyl chloride, formed in situ, with p-aminophenyldichloroarsine. The reaction of the arsine oxide-biotin conjugate with 1,2-ethanedithiol produces the stabilized dithiarsolane. These reagents are now readily available for a variety of applications.
Assuntos
Arsenicais/química , Arsenicais/síntese química , Biotina/química , Mercaptoetanol/análogos & derivados , Mercaptoetanol/química , Estrutura Molecular , EstereoisomerismoRESUMO
A series of racemic, diastereoisomeric aryl cyclopropylamines substituted with fluorine in the 2-position and electron-donating and electron-withdrawing groups on the aromatic ring have been prepared. These represent analogues of the classic MAO inhibitor tranylcypromine (trans-2-phenylcyclopropylamine, 1). Their activities as inhibitors of recombinant human liver monoamine oxidases A (MAO A) and B (MAO B) were determined. The trans-compounds were low micromolar inhibitors of both MAO A and MAO B with moderate MAO A selectivity while the less active cis-analogues were MAO B selective. In the trans-series, electron-withdrawing para-substituents increased the potency of MAO A inhibition while electron-donating groups such as methyl or methoxy had no influence on this activity. In contrast, aromatic ring substitution in the trans-series had essentially no effect on the inhibition of MAO B. The corresponding cis-compounds were shown to be 10-100 times less active against MAO A, while trans- and cis-compounds were quite similar in terms of inhibition of MAO B. The best MAO A/MAO B selectivity (7:1) in the trans-series was found for trans-2-fluoro-2-(para-trifluoromethylphenyl)cyclopropylamine (7d), while a 1:27 selectivity was found for cis-2-fluoro-2-(para-fluorophenyl)cyclopropylamine (10c). These results are discussed in connection with the pK(a) and logD values, the mechanism of action of tranylcypromines, and the geometry of the active site of the enzymes.
Assuntos
Ciclopropanos/química , Ciclopropanos/farmacologia , Flúor/química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Elétrons , Humanos , Mitocôndrias/enzimologia , Modelos Moleculares , Biologia Molecular , Relação Estrutura-AtividadeRESUMO
We have designed sugar-hybrid TX-1877 derivatives conjugated with sugar moieties including beta-glucose (beta-Glc), beta-galactose (beta-Gal), alpha-mannose (alpha-Man) and N-acetyl-beta-galactosamine (beta-GalNAc). Compound 1 (TX-1877) was glycosylated with appropriate peracetylated sugars using BF(3)-OEt(2) to give acetylated sugar-hybrids, 5 (TX-2244), 6 (TX-2245), 7 (TX-2246), and 10 (TX-2243). Removal of the acetyl groups afforded the sugar-hybrids having free hydroxyl groups, 11 (TX-2141), 12 (TX-2218), 13 (TX-2217) and 14 (TX-2068). We evaluated their radiosensitizing activities by an in vitro radiosensitization assay. All free hydroxyl hybrids have lower enhancement ratio (ER) values (ER1.43) and lower n-octanol/water partition coefficient (P(oct)) values (P(oct)<1.00x10(-2)) than does 1 (TX-1877, ER=1.75, P(oct): 5.60x10(-2)). All acetylated hybrids have similar P(oct) values (3.55x10(-2)-1.05x10(-1)) to 1 (TX-1877) and have improved ER values (ER>or=1.47) compared to the hybrids having free hydroxyl groups. Among these, 5 (TX-2244) is the most active radiosensitizer (ER=2.30). We found a good correlation (r=0.866) between the magnitude of P(oct) (logP(oct)) and the ER value of 5 (TX-2244), 6 (TX-2245), 7 (TX-2246), 10 (TX-2243) and 1 (TX-1877), suggesting that increasing the hydrophobicity is reflected in increased in vitro radiosensitizing activity. In the present study, we have succeeded in producing sugar-hybrid hypoxic cell radiosensitizers that have an increased radiosensitizing activity that does not depend on increased hydrophobicity.
Assuntos
Carboidratos , Nitroimidazóis , Radiossensibilizantes , Algoritmos , Carboidratos/síntese química , Carboidratos/química , Carboidratos/farmacocinética , Carboidratos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Desenho de Fármacos , Humanos , Masculino , Estrutura Molecular , Nitroimidazóis/síntese química , Nitroimidazóis/química , Nitroimidazóis/farmacocinética , Nitroimidazóis/farmacologia , Radiossensibilizantes/síntese química , Radiossensibilizantes/química , Radiossensibilizantes/farmacocinética , Radiossensibilizantes/farmacologiaRESUMO
We designed chiral 2-nitroimidazole derivatives containing a 2-aminomethylene-4-cyclopentene-1,3-dione moiety as antiangiogenic hypoxic cell radiosensitizers. Based on results of molecular orbital calculations, the 2-aminomethylene-4-cyclopentene-1,3-dione moiety is expected to show high electrophilicity comparable to that of the 2-methylene-4-cyclopentene-1,3-dione moiety included in TX-1123 and tyrphostin AG17. We evaluated the antiangiogenic and radiosensitizing effects of the new compounds, along with other biological properties including their activities as hypoxic cytotoxicities and protein tyrosine kinase (PTK) inhibitory activities. Among the compounds tested, 5 (TX-2036) proved to be the strongest antiangiogenic hypoxic cell radiosensitizer. All the other chiral 2-nitroimidazole derivatives having 2-aminomethylene-4-cyclopentene-1,3-dione moiety tested were also antiangiogenic hypoxic cell radiosensitizers. The PTK inhibitory activity of 5 (TX-2036) showed this to be a promising and potent EGFR kinase inhibitor, having an IC(50) value of lower than 2microM. This compound also was an Flt-1 kinase inhibitor having an IC(50) value of lower than 20microM. Our results show that these chiral 2-nitroimidazole derivatives that contain the 2-aminomethylene-4-cyclopentene-1,3-dione moiety as a potent antiangiogenic pharmacophoric descriptor are promising lead candidates for the development of antiangiogenic hypoxic cell radiosensitizers.
Assuntos
Inibidores da Angiogênese/síntese química , Hipóxia Celular/efeitos dos fármacos , Ciclopentanos/síntese química , Desenho de Fármacos , Nitroimidazóis/química , Radiossensibilizantes/síntese química , Inibidores da Angiogênese/toxicidade , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Ciclopentanos/toxicidade , Camundongos , Modelos Moleculares , Nitroimidazóis/toxicidade , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/toxicidade , Radiossensibilizantes/toxicidade , Ratos , EstereoisomerismoRESUMO
The C-1-phosphonate analogue of UDP-GlcNAc has been synthesized using an alpha-configured C-1-aldehyde as a key intermediate. Addition of the anion of diethyl phosphate to the aldehyde produced the hydroxyphosphonate. The configuration of this key intermediate was determined by X-ray crystallography. Deoxygenation, coupling of the resulting phosphonic acid with UMP and deprotection gave the target molecule as a di-sodium salt. This analogue had no detectable activity as an inhibitor of (OGT).
Assuntos
N-Acetilglucosaminiltransferases/antagonistas & inibidores , Organofosfonatos/síntese química , Uridina Difosfato N-Acetilglicosamina/síntese química , Aldeídos , Cristalografia por Raios X , Estrutura Molecular , Organofosfatos , Organofosfonatos/farmacologia , Uridina Difosfato N-Acetilglicosamina/farmacologiaRESUMO
Diastereomeric arylcyclopropylamines substituted with fluorine in the 2-position and with electron donating or electron withdrawing groups at the aromatic ring were evaluated as inhibitors of microbial tyramine oxidase. The trans-isomers were consistently more potent inhibitors of the enzyme than the cis-isomers. Electron donating substituents increased the potency of tyramine oxidase inhibition, while electron withdrawing substituents decreased the activity. The results obtained are discussed in terms of pK(a) and log D values of the inhibitors as well as the mechanism of action of tranylcypromines and the geometry of the active site of the enzyme.
RESUMO
We report a new synthesis of enantiomerically pure (S)-4-fluorohisitidine based on diastereoselective alkylation of MOM-protected 4-fluoro-5-bromomethyl imidazole using the Schöllkopf bis-lactim amino acid synthesis. Improvements in procedures for preparation of key intermediates are also described. (S)-4-Fluorohisitidine prepared by this new method was identical in all respects to material prepared by previous procedures.
RESUMO
Oxidative fluorination of several protected tryptophans 8b-g with Selectfluor proceeded smoothly in aqueous media to give a diastereomeric mixture of the corresponding 3-fluorooxindoles 9b-g. Attempted deprotection of the 3-fluorooxindoles 9b-g under various conditions did not afford 3-(3-fluorooxindol-3-yl)-l-alanine (6). Reaction of the suitably protected tryptophan derivative 16 with Selectfluor produced the fluorinated product 17. Simultaneous cleavage of all protective groups of 17 under acidic conditions successfully gave the target compound 6 in excellent yield.
RESUMO
Horner-Emmons fluoroolefination of an aryl aldehyde followed by introduction of a second fluorine via "FBr" addition provides an original approach to the preparation of 1-alkyl-2-aryl-1,2-difluoroethenes. The utility of this procedure is demonstrated by the preparation of (E and Z)-alpha,beta-difluorourocanic acid.
RESUMO
As a cancer chemotherapeutic drug, arsenic acts on numerous intracellular signal transduction pathways in cancer cells. However, its mechanism of actions is still not fully understood. Previous studies suggest that arsenic reacts with closely spaced cysteine (Cys) residues of proteins with high Cys content and accessible sulfhydryl (SH) groups. In this study, human breast cancer cell line MCF-7 was examined as a cellular model to explore arsenic-binding proteins and the mechanism of binding. An arsenic-biotin conjugate was synthesized by coupling the pentafluorophenol ester of biotin with p-aminophenylarsenoxide. Arsenic-binding proteins were eluted with streptavidin resin from arsenic-biotin treated MCF-7 cells, separated by polyacrylamide gel electrophoresis, and identified by matrix assisted laser desorption ionization mass spectrometry (MALDI-MS). Arsenic-binding properties of two of these proteins, beta-tubulin and pyruvate kinase M2 (PKM2), were studied further in vitro and the biological consequences of this binding was evaluated. Binding assay with Western blotting confirmed binding of beta-tubulin and PKM2 by arsenic in a concentration-dependent manner. Arsenic binding inhibited tubulin polymerization, but surprisingly had no effect on PKM2 activity. Molecular modeling showed that binding of Cys(12) alone or vicinal Cys residues (Cys(12) and Cys(213)) of beta-tubulin by arsenic blocked the active site for access of GTP, which is necessary for tubulin polymerization. On the contrary, all Cys residues of PKM2 were far away from the active site of the enzyme. In summary, this study confirmed beta-tubulin and PKM2 as arsenic-binding proteins in MCF-7 cells. Functional consequence of such binding may depend on whether arsenic binding causes conformational changes or blocks active sites of target proteins.
Assuntos
Arsênio/química , Neoplasias da Mama/metabolismo , Proteínas de Transporte/metabolismo , Antineoplásicos/farmacologia , Biotina/química , Linhagem Celular Tumoral , Cisteína/química , Humanos , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Piruvato Quinase/metabolismo , Tubulina (Proteína)/químicaRESUMO
Photochemical Schiemann reactions of imidazole derivatives 1 and 4 were carried out in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid [bmim][BF(4)] as solvent. The effects of temperature, co-solvent and wavelength on the rate of the reaction and product yield were examined. The use of ionic liquid increases the yield of the photochemical fluorodediazoniation reaction of 2 at 0°C. Careful temperature control is necessary to minimize the photodecomposition of the ionic liquid in order to increase the yield of product.
RESUMO
Several strategies used in the rational design and synthesis of fluorinated compounds as potential therapeutic agents are reviewed. Applications of fluorine substitution in empirical SAR studies for lead development also are discussed, along with the implications with respect to fluorine target interactions that can be derived from biological activities.