Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39201590

RESUMO

Glucocorticoids (GCs) are widely used for treating hematological malignancies despite their multiple adverse effects. The biological response to GCs relies on glucocorticoid receptor (GR) transrepression (TR) that mediates the anticancer effects and transactivation (TA) associated with the side effects. Selective GR agonists (SEGRAs) preferentially activating GR TR could offer greater benefits in cancer treatment. One of the well-characterized SEGRAs, 2-(4-acetoxyphenyl)-2-chloro-N-methylethylammonium-chloride (CpdA), exhibited anticancer activity; however, its translational potential is limited due to chemical instability. To overcome this limitation, we obtained CpdA derivatives, CpdA-01-CpdA-08, employing two synthetic strategies and studied their anti-tumor activity: 4-(1-hydroxy-2-(piperidin-1-yl)ethyl)phenol or CpdA-03 demonstrated superior GR affinity and stability compared to CpdA. In lymphoma Granta and leukemia CEM cell lines, CpdA-03 ligand exhibited typical SEGRA properties, inducing GR TR without triggering GR TA. CpdA-03 effects on cell viability, growth, and apoptosis were similar to the reference GR ligand, dexamethasone (Dex), and the source compound CpdA. In vivo testing of CpdA-03 activity against lymphoma on the transplantable P388 murine lymphoma model showed that CpdA-03 reduced tumor volume threefold, outperforming Dex and CpdA. In conclusion, in this work, we introduce a novel SEGRA CpdA-03 as a promising agent for lymphoma treatment with fewer side effects.


Assuntos
Antineoplásicos , Receptores de Glucocorticoides , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fenetilaminas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Acetatos , Tiramina/análogos & derivados
2.
Biochemistry (Mosc) ; 88(7): 968-978, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37751867

RESUMO

Epigenetic genome regulation during malignant cell transformation is characterized by the aberrant methylation and acetylation of histones. Vorinostat (SAHA) is an epigenetic modulator actively used in clinical oncology. The antitumor activity of vorinostat is commonly believed to be associated with the inhibition of histone deacetylases, while the impact of this drug on histone methylation has been poorly studied. Using HeLa TI cells as a test system allowing evaluation of the effect of epigenetically active compounds from the expression of the GFP reporter gene and gene knockdown by small interfering RNAs, we showed that vorinostat not only suppressed HDAC1, but also reduced the activity of EZH2, SUV39H1, SUV39H2, and SUV420H1. The ability of vorinostat to suppress expression of EZH2, SUV39H1/2, SUV420H1 was confirmed by Western blotting. Vorinostat also downregulated expression of SUV420H2 and DOT1L enzymes. The data obtained expand our understanding of the epigenetic effects of vorinostat and demonstrate the need for a large-scale analysis of its activity toward other enzymes involved in the epigenetic genome regulation. Elucidation of the mechanism underlying the epigenetic action of vorinostat will contribute to its more proper use in the treatment of tumors with an aberrant epigenetic profile.


Assuntos
Epigênese Genética , Vorinostat/farmacologia , Histona Metiltransferases , Genes Reporter , Western Blotting
3.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629054

RESUMO

The development of malignant tumors is caused by a complex combination of genetic mutations and epigenetic alterations, the latter of which are induced by either external environmental factors or signaling disruption following genetic mutations. Some types of cancer demonstrate a significant increase in epigenetic enzymes, and targeting these epigenetic alterations represents a compelling strategy to reverse cell transcriptome to the normal state, improving chemotherapy response. Curaxin CBL0137 is a new potent anticancer drug that has been shown to activate epigenetically silenced genes. However, its detailed effects on the enzymes of the epigenetic system of transcription regulation have not been studied. Here, we report that CBL0137 inhibits the expression of DNA methyltransferase DNMT3a in HeLa TI cells, both at the level of mRNA and protein, and it decreases the level of integral DNA methylation in Ca Ski cells. For the first time, it is shown that CBL0137 decreases the level of BET family proteins, BRD2, BRD3, and BRD4, the key participants in transcription elongation, followed by the corresponding gene expression enhancement. Furthermore, we demonstrate that CBL0137 does not affect the mechanisms of histone acetylation and methylation. The ability of CBL0137 to suppress DNMT3A and BET family proteins should be taken into consideration when combined chemotherapy is applied. Our data demonstrate the potential of CBL0137 to be used in the therapy of tumors with corresponding aberrant epigenetic profiles.


Assuntos
Desmetilação do DNA , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Metilases de Modificação do DNA , Epigênese Genética , Proteínas de Ciclo Celular
4.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139366

RESUMO

This review is focused on synephrine, the principal phytochemical found in bitter orange and other medicinal plants and widely used as a dietary supplement for weight loss/body fat reduction. We examine different aspects of synephrine biology, delving into its established and potential molecular targets, as well as its mechanisms of action. We present an overview of the origin, chemical composition, receptors, and pharmacological properties of synephrine, including its anti-inflammatory and anti-cancer activity in various in vitro and animal models. Additionally, we conduct a comparative analysis of the molecular targets and effects of synephrine with those of its metabolite, selective glucocorticoid receptor agonist (SEGRA) Compound A (CpdA), which shares a similar chemical structure with synephrine. SEGRAs, including CpdA, have been extensively studied as glucocorticoid receptor activators that have a better benefit/risk profile than glucocorticoids due to their reduced adverse effects. We discuss the potential of synephrine usage as a template for the synthesis of new generation of non-steroidal SEGRAs. The review also provides insights into the safe pharmacological profile of synephrine.


Assuntos
Citrus , Sinefrina , Animais , Sinefrina/efeitos adversos , Receptores de Glucocorticoides/metabolismo , Extratos Vegetais/farmacologia , Anti-Inflamatórios , Citrus/metabolismo
5.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569668

RESUMO

Treatment of highly malignant soft tissue sarcomas (STSs) requires multicomponent therapy including surgery, radiotherapy, and chemotherapy. Despite the advancements in targeted cancer therapies, cytostatic drug combinations remain the gold standard for STS chemotherapy. The lack of algorithms for personalized selection of STS chemotherapy leads to unhelpful treatment of chemoresistant tumors, causing severe side effects in patients. The goal of our study is to assess the applicability of in vitro chemosensitivity/resistance assays (CSRAs) in predicting STS chemoresistance. Primary cell cultures were obtained from 148 surgery samples using enzymatic and mechanical disaggregation. CSRA was performed using resazurin-based metabolic activity measurement in cells cultured with doxorubicin, ifosfamide, their combination and docetaxel, gemcitabine, and also their combination for 7 days. Both the clinical data of patients and the CSRA results demonstrated a higher resistance of some cancer histotypes to specific drugs and their combinations. The correlation between the CSRA results for doxorubicin and ifosfamide and clinical responses to the combination chemotherapy with these drugs was demonstrated via Spearman rank order correlation. Statistically significant differences in recurrence-free survival were also shown for the groups of patients formed, according to the CSRA results. Thus, CSRAs may help both practicing physicians to avoid harmful and useless treatment, and researchers to study new resistance markers and to develop new STS drugs.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Ifosfamida/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Sarcoma/patologia , Neoplasias de Tecidos Moles/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico
6.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077083

RESUMO

Regulated in Development and DNA Damage Response 1 (REDD1)/DNA Damage-Induced Transcript 4 (DDIT4) is an immediate early response gene activated by different stress conditions, including growth factor depletion, hypoxia, DNA damage, and stress hormones, i.e., glucocorticoids. The most known functions of REDD1 are the inhibition of proliferative signaling and the regulation of metabolism via the repression of the central regulator of these processes, the mammalian target of rapamycin (mTOR). The involvement of REDD1 in cell growth, apoptosis, metabolism, and oxidative stress implies its role in various pathological conditions, including cancer and inflammatory diseases. Recently, REDD1 was identified as one of the central genes mechanistically involved in undesirable atrophic effects induced by chronic topical and systemic glucocorticoids widely used for the treatment of blood cancer and inflammatory diseases. In this review, we discuss the role of REDD1 in the regulation of cell signaling and processes in normal and cancer cells, its involvement in the pathogenesis of different diseases, and the approach to safer glucocorticoid receptor (GR)-targeted therapies via a combination of glucocorticoids and REDD1 inhibitors to decrease the adverse atrophogenic effects of these steroids.


Assuntos
Glucocorticoides , Neoplasias , Fatores de Transcrição/metabolismo , Glucocorticoides/farmacologia , Humanos , Inflamação , Neoplasias/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais
7.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012470

RESUMO

Guanine-rich DNA sequences tending to adopt noncanonical G-quadruplex (G4) structures are over-represented in promoter regions of oncogenes. Ligands recognizing G4 were shown to stabilize these DNA structures and drive their formation regulating expression of corresponding genes. We studied the interaction of several plant secondary metabolites (PSMs) with G4s and their effects on gene expression in a cellular context. The binding of PSMs with G4s formed by the sequences of well-studied oncogene promoters and telomeric repeats was evaluated using a fluorescent indicator displacement assay. c-MYC G4 folding topology and thermal stability, as well as the PMS influence on these parameters, were demonstrated by UV-spectroscopy and circular dichroism. The effects of promising PSMs on c-MYC expression were assessed using luciferase reporter assay and qPR-PCR in cancer and immortalized cultured cells. The ability of PMS to multi-targeting cell signaling pathways was analyzed by the pathway-focused gene expression profiling with qRT-PCR. The multi-target activity of a number of PSMs was demonstrated by their interaction with a set of G4s mimicking those formed in the human genome. We have shown a direct G4-mediated down regulation of c-MYC expression by sanguinarine, quercetin, kaempferol, and thymoquinone; these effects being modulated by PSM's indirect influence via cell signaling pathways.


Assuntos
Quadruplex G , Genes myc , Humanos , Oncogenes , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Telômero/metabolismo
8.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328603

RESUMO

Chemotherapy of soft tissue sarcomas (STS) is restricted by low chemosensitivity and multiple drug resistance (MDR). The purpose of our study was the analysis of MDR mechanism in different types of STS. We assessed the expression of ABC-transporters, MVP, YB-1, and analyzed their correlation with chemosensitivity of cancer cells. STS specimens were obtained from 70 patients without metastatic disease (2018-2020). Expression level of MDR-associated genes was estimated by qRT-PCR and cytofluorimetry. Mutations in ABC-transporter genes were captured by exome sequencing. Chemosensitivity (SI) of STS to doxorubicin (Dox), ifosfamide (Ifo), gemcitabine (Gem), and docetaxel (Doc) was analyzed in vitro. We found strong correlation in ABCB1, ABCC1, and ABCG2 expression. We demonstrated strong negative correlations in ABCB1 and ABCG2 expression with SI (Doc) and SI (Doc + Gem), and positive correlation of MVP expression with SI (Doc) and SI (Doc + Gem) in undifferentiated pleomorphic sarcoma. Pgp expression was shown in 5 out of 44 STS samples with prevalence of synovial sarcoma relapses and it is strongly correlated with SI (Gem). Mutations in MDR-associated genes were rarely found. Overall, STS demonstrated high heterogeneity in chemosensitivity that makes reasonable in vitro chemosensitivity testing to improve personalized STS therapy, and classic ABC-transporters are not obviously involved in MDR appearance.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Transportadores de Cassetes de Ligação de ATP/genética , Docetaxel/uso terapêutico , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Recidiva Local de Neoplasia , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/patologia , Neoplasias de Tecidos Moles/tratamento farmacológico
9.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234753

RESUMO

Natural polyamines (PAs) are involved in the processes of proliferation and differentiation of cancer cells. Lipophilic synthetic polyamines (LPAs) induce the cell death of various cancer cell lines. In the current paper, we have demonstrated a new method for synthesis of LPAs via the multicomponent Ugi reaction and subsequent reduction of amide groups by PhSiH3. The anticancer activity of the obtained compounds was evaluated in the A-549, MCF7, and HCT116 cancer cell lines. For the first time, it was shown that the anticancer activity of LPAs with piperazine fragments is comparable with that of aliphatic LPAs. The presence of a diglyceride fragment in the structure of LPAs appears to be a key factor for the manifestation of high anticancer activity. The findings of the study strongly support further research in the field of LPAs and their derivatives.


Assuntos
Antineoplásicos , Neoplasias , Amidas , Antineoplásicos/química , Diglicerídeos , Humanos , Piperazinas , Poliaminas/química
10.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948263

RESUMO

A series of bifunctional Ru(III) complexes with lonidamine-modified ligands (lonidamine is a selective inhibitor of aerobic glycolysis in cancer cells) was described. Redox properties of Ru(III) complexes were characterized by cyclic voltammetry. An easy reduction suggested a perspective for these agents as their whole mechanism of action seems to be based on activation by metal atom reduction. New compounds demonstrated a more pronounced antiproliferative potency than the parental drug; individual new agents were more cytotoxic than cisplatin. Stability studies showed an increase in the stability of complexes along with the linker length. A similar trend was noted for antiproliferative activity, cellular uptake, apoptosis induction, and thioredoxin reductase inhibition. Finally, at concentrations that did not alter water solubility, the selected new complex evoked no acute toxicity in Balb/c mice.


Assuntos
Indazóis/química , Rutênio/química , Rutênio/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Oxirredução , Relação Estrutura-Atividade , Tiorredoxina Dissulfeto Redutase/metabolismo
11.
Molecules ; 26(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885910

RESUMO

Novel indolocarbazole derivatives named LCS were synthesized by our research group. Two of them were selected as the most active anticancer agents in vivo. We studied the mechanisms of anticancer activity in accordance with the previously described effects of indolocarbazoles. Cytotoxicity was estimated by MTT assay. We analyzed LCS-DNA interactions by circular dichroism in cholesteric liquid crystals and fluorescent indicator displacement assay. The effect on the activity of topoisomerases I and II was studied by DNA relaxation assay. Expression of interferon signaling target genes was estimated by RT-PCR. Chromatin remodeling was analyzed-the effect on histone H1 localization and reactivation of epigenetically silenced genes. LCS-induced change in the expression of a wide gene set was counted by means of PCR array. Our study revealed the cytotoxic activity of the compounds against 11 cancer cell lines and it was higher than in immortalized cells. Both compounds bind DNA; binding constants were estimated-LCS-1208 demonstrated higher affinity than LCS-1269; it was shown that LCS-1208 intercalates into DNA that is typical for rebeccamycin derivatives. LCS-1208 also inhibits topoisomerases I and IIα. Being a strong intercalator and topoisomerase inhibitor, LCS-1208 upregulates the expression of interferon-induced genes. In view of LCSs binding to DNA we analyzed their influence on chromatin stability and revealed that LCS-1269 displaces histone H1. Our analysis of chromatin remodeling also included a wide set of epigenetic experiments in which LCS-1269 demonstrated complex epigenetic activity. Finally, we revealed that the antitumor effect of the compounds is based not only on binding to DNA and chromatin remodeling but also on alternative mechanisms. Both compounds induce expression changes in genes involved in neoplastic transformation and target genes of the signaling pathways in cancer cells. Despite of being structurally similar, each compound has unique biological activities. The effects of LCS-1208 are associated with intercalation. The mechanisms of LCS-1269 include influence on higher levels such as chromatin remodeling and epigenetic effects.


Assuntos
Antineoplásicos/farmacologia , Carbazóis/farmacologia , Glicosídeos/farmacologia , Antineoplásicos/química , Carbazóis/química , Linhagem Celular Tumoral , Epigênese Genética/efeitos dos fármacos , Glicosídeos/química , Humanos , Indóis/química , Indóis/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
12.
Plant Foods Hum Nutr ; 75(2): 292-297, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32350812

RESUMO

Functional food with high concentrations of monosaccharides and antioxidants is important for quick replenishment of energy reserves and rehabilitation after intensive oxidant stress. The effect of high temperature and humidity for manufacturing such products from parsnip roots of three cultivars (Zemchug, Krugly, Bely aist) compared to garlic bulbs from cultivar Demidovsky was investigated. The processed parsnip demonstrated higher antioxidant activity than 'black garlic': phenolics (22.6 compared to 13.3 mg-GAE/g d.w.), total antioxidant activity (26.1 compared to 18.1 mg-GAE/g d.w.) and radical scavenging activity (0.24 compared to 0.18 mcM TE/g d.w.). Monosaccharides concentration in parsnip roots increased from 6.5-8.0 to 36.2-42.5 g/100 g d.w., the latter range including the value relevant to the processed garlic (37.4 g/100 g d.w.). Parsnip roots showed concurrent monosaccharides increase and disaccharides decrease (from 33.75-37.2 to 1.25-6.72 g/100 g), whereas garlic displayed the enhancement of both mono- and disaccharide biosynthesis. Total acidity level in processed parsnip also increased by 3 to 5 times and was highly correlated with monosaccharides content (r = 0.99 at P ≤ 0.01). Thanks to its higher mineral content, 'black parsnip' proved to be suitable for quick energy and antioxidant replenishment after strong physical and/or oxidant stress.


Assuntos
Alho , Pastinaca , Antioxidantes , Umidade , Temperatura
13.
Nucleic Acids Res ; 45(4): 1925-1945, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28082391

RESUMO

Transitions of B-DNA to alternative DNA structures (ADS) can be triggered by negative torsional strain, which occurs during replication and transcription, and may lead to genomic instability. However, how ADS are recognized in cells is unclear. We found that the binding of candidate anticancer drug, curaxin, to cellular DNA results in uncoiling of nucleosomal DNA, accumulation of negative supercoiling and conversion of multiple regions of genomic DNA into left-handed Z-form. Histone chaperone FACT binds rapidly to the same regions via the SSRP1 subunit in curaxin-treated cells. In vitro binding of purified SSRP1 or its isolated CID domain to a methylated DNA fragment containing alternating purine/pyrimidines, which is prone to Z-DNA transition, is much stronger than to other types of DNA. We propose that FACT can recognize and bind Z-DNA or DNA in transition from a B to Z form. Binding of FACT to these genomic regions triggers a p53 response. Furthermore, FACT has been shown to bind to other types of ADS through a different structural domain, which also leads to p53 activation. Thus, we propose that FACT acts as a sensor of ADS formation in cells. Recognition of ADS by FACT followed by a p53 response may explain the role of FACT in DNA damage prevention.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/genética , Células Eucarióticas/metabolismo , Conformação de Ácido Nucleico , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Humanos , Repetições de Microssatélites , Modelos Biológicos , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Subunidades Proteicas , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
14.
Cancers (Basel) ; 16(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38254762

RESUMO

Liposarcoma (LPS) is one of the most common adult soft-tissue sarcomas (STS), characterized by a high diversity of histopathological features as well as to a lesser extent by a spectrum of molecular abnormalities. Current targeted therapies for STS do not include a wide range of drugs and surgical resection is the mainstay of treatment for localized disease in all subtypes, while many LPS patients initially present with or ultimately progress to advanced disease that is either unresectable, metastatic or both. The understanding of the molecular characteristics of liposarcoma subtypes is becoming an important option for the detection of new potential targets and development novel, biology-driven therapies for this disease. Innovative therapies have been introduced and they are currently part of preclinical and clinical studies. In this review, we provide an analysis of the molecular genetics of liposarcoma followed by a discussion of the specific epigenetic changes in these malignancies. Then, we summarize the peculiarities of the key signaling cascades involved in the pathogenesis of the disease and possible novel therapeutic approaches based on a better understanding of subtype-specific disease biology. Although heterogeneity in liposarcoma genetics and phenotype as well as the associated development of resistance to therapy make difficult the introduction of novel therapeutic targets into the clinic, recently a number of targeted therapy drugs were proposed for LPS treatment. The most promising results were shown for CDK4/6 and MDM2 inhibitors as well as for the multi-kinase inhibitors anlotinib and sunitinib.

15.
Front Biosci (Landmark Ed) ; 29(8): 275, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39206902

RESUMO

BACKGROUND: Many plant secondary metabolites (PSMs) were shown to intercalate into DNA helix or interact with DNA grooves. This may influence histone-DNA interactions changeing chromatin structure and genome functioning. METHODS: Nucleosome stability and linker histone H1.2, H1.4 and H1.5 localizations were studied in HeLa cells after the treatment with 15 PSMs, which are DNA-binders and possess anticancer activity according to published data. Chromatin remodeler CBL0137 was used as a control. Effects of PSMs were studied using fluorescent microscopy, flowcytometry, quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR), western-blotting. RESULTS: We showed that 1-hour treatment with CBL0137 strongly inhibited DNA synthesis and caused intensive linker histone depletion consistent with nucleosome destabilization. None of PSMs caused nucleosome destabilization, while most of them demonstrated significant influence on linker histone localizations. In particular, cell treatment with 11 PSMs at non-toxic concentrations induced significant translocation of the histone H1.5 to nucleoli and most of PSMs caused depletion of the histones H1.2 and H1.4 from chromatin fraction. Curcumin, resveratrol, berberine, naringenin, and quercetin caused significant redistribution of all three variants of the studied linker histones showing some overlap of PSM effects on linker histone DNA-binding. We demonstrated that PSMs, which induced the most significant redistribution of the histone H1.5 (berberine, curcumin and naringenin), influence the proportion of cells synthesizing DNA, expressing or non-expressing cyclin B and influence cell cycle distribution. Berberine induction of H1.5 translocations to nucleoli was shown to occur independently on the phases of cell cycle (metaphase was not analyzed). CONCLUSIONS: For the first time we revealed PSM influence on linker histone location in cell nuclei that opens a new direction of PSM research as anticancer agents.


Assuntos
Cromatina , Histonas , Histonas/metabolismo , Humanos , Células HeLa , Cromatina/metabolismo , Nucleossomos/metabolismo , Nucleossomos/efeitos dos fármacos , Metabolismo Secundário , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos/farmacologia
16.
Biomed Rep ; 20(3): 42, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38343657

RESUMO

Combining chemotherapy and hormone therapy is a prevalent approach in breast cancer treatment. While the cytotoxic impact of numerous chemotherapy drugs stems from DNA damage, the exact role of these DNA alterations in modulating estrogen receptor α (ERα) machinery remains elusive. The present study aimed to analyze the impact of DNA damage agents on ERα signaling in breast cancer cells and assess the signaling pathways mediating the influence of DNA damage drugs on the ERα machinery. Cell viability was assessed using the MTT method, while the expression of signaling proteins was analyzed by immunoblotting. ERα activity in the cells treated with various drugs (17ß-estradiol, tamoxifen, 5-fluorouracil) was assessed through reporter gene assays. In vitro experiments were conducted on MCF7 breast cancer cells subjected to varying durations of 5-fluorouracil (5-FU) treatment. Two distinct cell responses to 5-FU were identified based on the duration of the treatment. A singular dose of 5-FU induces pronounced DNA fragmentation, temporally suppressing ERα signaling while concurrently activating AKT phosphorylation. This suppression reverses upon 5-FU withdrawal, restoring normalcy within ten days. However, chronic 5-FU treatment led to the emergence of 5-FU-resistant cells with irreversible alterations in ERα signaling, resulting in partial hormonal resistance. These changes mirror those observed in cells subjected to UV-induced DNA damage, underscoring the pivotal role of DNA damage in shaping estrogen signaling alterations in breast cancer cells. In summary, the results of the present study suggested that the administration of DNA damage agents to cancer cells can trigger irreversible suppression of estrogen signaling, fostering the development of partial hormonal resistance. This outcome may ultimately impede the efficacy of combined or subsequent chemo- and hormone therapy strategies.

17.
Cardiovasc Pathol ; 73: 107683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39111556

RESUMO

Over the years, advancements in the field of oncology have made remarkable strides in enhancing the efficacy of medical care for patients with cancer. These modernizations have resulted in prolonged survival and improved the quality of life for these patients. However, this progress has also been accompanied by escalation in mortality rates associated with anthracycline chemotherapy. Anthracyclines, which are known for their potent antitumor properties, are notorious for their substantial cardiotoxic potential. Remarkably, even after 6 decades of research, a conclusive solution to protect the cardiovascular system against doxorubicin-induced damage has not yet been established. A comprehensive understanding of the pathophysiological processes driving cardiotoxicity combined with targeted research is crucial for developing innovative cardioprotective strategies. This review seeks to explain the mechanisms responsible for structural and functional alterations in doxorubicin-induced cardiomyopathy.


Assuntos
Antibióticos Antineoplásicos , Cardiotoxicidade , Doxorrubicina , Humanos , Doxorrubicina/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/fisiopatologia , Cardiomiopatias/patologia , Transdução de Sinais/efeitos dos fármacos
18.
Pharmaceutics ; 16(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38258135

RESUMO

In this study, we described physico-chemical properties of novel nanoformulation of photosensitizer-pyropheophorbide α 17-diethylene glycol ester (XL) (chlorophyll α derivative), revealing insights into antitumor activity and maintaining quality, meeting the pharmaceutical approach of new nanoformulation design. Our formulation, based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles, increased XL solubility and selective tumor-targeted accumulation. In our research, we revealed, for the first time, that XL binding to polyvinyl alcohol (PVA) enhances XL photophysical activity, providing the rationale for PVA application as a stabilizer for nanoformulations. Results of FTIR, DSC, and XRD revealed the physical interactions between XL and excipients, including PVA, indicating that the encapsulation maintained XL binding to PVA. The encapsulated XL exhibited higher photophysical activity compared to non-encapsulated substance, which can be attributed to the influence of residual PVA. Gamma-irradiation led to degradation of XL; however, successful sterilization of the samples was achieved through the filtration. Importantly, the encapsulated and sterilized XL retained cytotoxicity against both 2D and 3D tumor cell models, demonstrating the potential of the formulated NP-XL for photodynamic therapy applications, but lacked the ability to reactivate epigenetically silenced genes. These findings provide valuable insights into the design and characterization of PLGA-based nanoparticles for the encapsulation of photosensitizers.

19.
Toxicology ; 500: 153675, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37993081

RESUMO

Chronic inflammation is associated with malignant transformation and creates the microenvironment for tumor progression. Cyclophilin A (CypA) is one of the major pro-inflammatory mediators that accumulates and persists in the site of inflammation in high doses over time. According to multiomics analyses of transformed cells, CypA is widely recognized as a pro-oncogenic factor. Vast experimental data define the functions of intracellular CypA in carcinogenesis, but findings on the role of its secreted form in tumor formation and progression are scarce. In the studies here, we exploit short-term in vitro and in vivo tests to directly evaluate the mutagenic, recombinogenic, and blastomogenic effects, as well as the promoter activity of recombinant human CypA (rhCypA), an analogue of secreted CypA. Our findings showed that rhCypA had no genotoxicity and, thus, was neither involved in nor influenced the initiation stage of carcinogenesis. At high doses, rhCypA could disrupt gap junctions in rat liver epithelial IAR-2 cells in vitro by decreasing the expression of connexins 26 and 43 in these cells and inhibit A549 cell adhesion. These data suggested that rhCypA could contribute to epithelial-mesenchymal transition in malignant cells. The research presented here elucidated the role of secreted CypA in carcinogenesis, revealing that it is not a tumor initiator but can act as a tumor promoter at high concentrations.


Assuntos
Ciclofilina A , Neoplasias , Ratos , Animais , Humanos , Ciclofilina A/genética , Ciclofilina A/metabolismo , Carcinógenos , Carcinogênese , Inflamação/metabolismo , Microambiente Tumoral
20.
Biomedicines ; 11(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36672738

RESUMO

The anticancer activity of Curaxin CBL0137, a DNA-binding small molecule with chromatin remodulating effect, has been demonstrated in different cancers. Herein, a comparative evaluation of CBL0137 activity was performed in respect to acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia and multiple myeloma (MM) cultured in vitro. MTT assay showed AML and MM higher sensitivity to CBL0137's cytostatic effect comparatively to other hematological malignancy cells. Flow cytometry cell cycle analysis revealed an increase in subG1 and G2/M populations after CBL0137 cell treatment, but the prevalent type of arrest varied. Apoptosis activation by CBL0137 measured by Annexin-V/PI dual staining was more active in AML and MM cells. RT2 PCR array showed that changes caused by CBL0137 in signaling pathways involved in cancer pathogenesis were more intensive in AML and MM cells. On the murine model of AML WEHI-3, CBL0137 showed significant anticancer effects in vivo, which were evaluated by corresponding changes in spleen and liver. Thus, more pronounced anticancer effects of CBL0137 in vitro were observed in respect to AML and MM. Experiments in vivo also indicated the perspective of CBL0137 use for AML treatment. This in accordance with the frontline treatment approach in AML using epigenetic drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA