Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sex Med ; 21(4): 278-287, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38383071

RESUMO

BACKGROUND: Transformation of resident fibroblasts to profibrotic myofibroblasts in the tunica albuginea is a critical step in the pathophysiology of Peyronie's disease (PD). We have previously shown that myofibroblasts do not revert to the fibroblast phenotype and we suggested that there is a point of no return at 36 hours after induction of the transformation. However, the molecular mechanisms that drive this proposed irreversibility are not known. AIM: Identify molecular pathways that drive the irreversibility of myofibroblast transformation by analyzing the expression of the genes involved in the process in a temporal fashion. METHODS: Human primary fibroblasts obtained from tunica albuginea of patients with Peyronie's disease were transformed to myofibroblasts using transforming growth factor beta 1 (TGF-ß1). The mRNA of the cells was collected at 0, 24, 36, 48, and 72 hours after stimulation with TGF-ß1 and then analyzed using a Nanostring nCounter Fibrosis panel. The gene expression results were analyzed using Reactome pathway analysis database and ANNi, a deep learning-based inference algorithm based on a swarm approach. OUTCOMES: The study outcome was the time course of changes in gene expression during transformation of PD-derived fibroblasts to myofibroblasts. RESULTS: The temporal analysis of the gene expression revealed that the majority of the changes at the gene expression level happened within the first 24 hours and remained so throughout the 72-hour period. At 36 hours, significant changes were observed in genes involved in MAPK-Hedgehog signaling pathways. CLINICAL TRANSLATION: This study highlights the importance of early intervention in clinical management of PD and the future potential of new drugs targeting the point of no return. STRENGTHS AND LIMITATIONS: The use of human primary cells and confirmation of results with further RNA analysis are the strengths of this study. The study was limited to 760 genes rather than the whole transcriptome. CONCLUSION: This study is to our knowledge the first analysis of temporal gene expression associated with the regulation of the transformation of resident fibroblasts to profibrotic myofibroblasts in PD. Further research is warranted to investigate the role of the MAPK-Hedgehog signaling pathways in reversibility of PD.


Assuntos
Induração Peniana , Masculino , Humanos , Induração Peniana/genética , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Hedgehog/metabolismo , Pênis , Células Cultivadas , Fibroblastos/metabolismo
2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474020

RESUMO

Versatility, sensitivity, and accuracy have made the real-time polymerase chain reaction (qPCR) a crucial tool for research, as well as diagnostic applications. However, for point-of-care (PoC) use, traditional qPCR faces two main challenges: long run times mean results are not available for half an hour or more, and the requisite high-temperature denaturation requires more robust and power-demanding instrumentation. This study addresses both issues and revises primer and probe designs, modified buffers, and low ∆T protocols which, together, speed up qPCR on conventional qPCR instruments and will allow for the development of robust, point-of-care devices. Our approach, called "FlashPCR", uses a protocol involving a 15-second denaturation at 79 °C, followed by repeated cycling for 1 s at 79 °C and 71 °C, together with high Tm primers and specific but simple buffers. It also allows for efficient reverse transcription as part of a one-step RT-qPCR protocol, making it universally applicable for both rapid research and diagnostic applications.


Assuntos
Transcrição Reversa , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA