Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396652

RESUMO

The architecture of the root system is fundamental to plant productivity. The rate of root growth, the density of lateral roots, and the spatial structure of lateral and adventitious roots determine the developmental plasticity of the root system in response to changes in environmental conditions. One of the genes involved in the regulation of the slope angle of lateral roots is DEEPER ROOTING 1 (DRO1). Its orthologs and paralogs have been identified in rice, Arabidopsis, and several other species. However, nothing is known about the formation of the slope angle of lateral roots in species with the initiation of lateral root primordia within the parental root meristem. To address this knowledge gap, we identified orthologs and paralogs of the DRO1 gene in cucumber (Cucumis sativus) using a phylogenetic analysis of IGT protein family members. Differences in the transcriptional response of CsDRO1, CsDRO1-LIKE1 (CsDRO1L1), and CsDRO1-LIKE2 (CsDRO1L2) to exogenous auxin were analyzed. The results showed that only CsDRO1L1 is auxin-responsive. An analysis of promoter-reporter fusions demonstrated that the CsDRO1, CsDRO1L1, and CsDRO1L2 genes were expressed in the meristem in cell files of the central cylinder, endodermis, and cortex; the three genes displayed different expression patterns in cucumber roots with only partial overlap. A knockout of individual CsDRO1, CsDRO1L1, and CsDRO1L2 genes was performed via CRISPR/Cas9 gene editing. Our study suggests that the knockout of individual genes does not affect the slope angle formation during lateral root primordia development in the cucumber parental root.


Assuntos
Arabidopsis , Cucumis sativus , Cucumis sativus/metabolismo , Raízes de Plantas/metabolismo , Filogenia , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176146

RESUMO

In Arabidopsis, the small signaling peptide (peptide hormone) RALF34 is involved in the gene regulatory network of lateral root initiation. In this study, we aimed to understand the nature of the signals induced by RALF34 in the non-model plant cucumber (Cucumis sativus), where lateral root primordia are induced in the apical meristem of the parental root. The RALF family members of cucumber were identified using phylogenetic analysis. The sequence of events involved in the initiation and development of lateral root primordia in cucumber was examined in detail. To elucidate the role of the small signaling peptide CsRALF34 and its receptor CsTHESEUS1 in the initial stages of lateral root formation in the parental root meristem in cucumber, we studied the expression patterns of both genes, as well as the localization and transport of the CsRALF34 peptide. CsRALF34 is expressed in all plant organs. CsRALF34 seems to differ from AtRALF34 in that its expression is not regulated by auxin. The expression of AtRALF34, as well as CsRALF34, is regulated in part by ethylene. CsTHESEUS1 is expressed constitutively in cucumber root tissues. Our data suggest that CsRALF34 acts in a non-cell-autonomous manner and is not involved in lateral root initiation in cucumber.


Assuntos
Arabidopsis , Cucumis sativus , Cucumis sativus/metabolismo , Raízes de Plantas/metabolismo , Filogenia , Meristema/genética , Meristema/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108821

RESUMO

The main role of RALF small signaling peptides was reported to be the alkalization control of the apoplast for improvement of nutrient absorption; however, the exact function of individual RALF peptides such as RALF34 remains unknown. The Arabidopsis RALF34 (AtRALF34) peptide was proposed to be part of the gene regulatory network of lateral root initiation. Cucumber is an excellent model for studying a special form of lateral root initiation taking place in the meristem of the parental root. We attempted to elucidate the role of the regulatory pathway in which RALF34 is a participant using cucumber transgenic hairy roots overexpressing CsRALF34 for comprehensive, integrated metabolomics and proteomics studies, focusing on the analysis of stress response markers. CsRALF34 overexpression resulted in the inhibition of root growth and regulation of cell proliferation, specifically in blocking the G2/M transition in cucumber roots. Based on these results, we propose that CsRALF34 is not part of the gene regulatory networks involved in the early steps of lateral root initiation. Instead, we suggest that CsRALF34 modulates ROS homeostasis and triggers the controlled production of hydroxyl radicals in root cells, possibly associated with intracellular signal transduction. Altogether, our results support the role of RALF peptides as ROS regulators.


Assuntos
Arabidopsis , Cucumis sativus , Humanos , Sinais Direcionadores de Proteínas/genética , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/metabolismo , Peptídeos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Ann Bot ; 122(5): 873-888, 2018 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29684107

RESUMO

Background and Aims: In some plant families, including Cucurbitaceae, initiation and development of lateral roots (LRs) occur in the parental root apical meristem. The objective of this study was to identify the general mechanisms underlying LR initiation (LRI). Therefore, the first cellular events leading to LRI as well as the role of auxin in this process were studied in the Cucurbita pepo root apical meristem. Methods: Transgenic hairy roots harbouring the auxin-responsive promoter DR5 fused to different reporter genes were used for visualizing of cellular auxin response maxima (ARMs) via confocal laser scanning microscopy and 3-D imaging. The effects of exogenous auxin and auxin transport inhibitors on root branching were analysed. Key Results: The earliest LRI event involved a group of symmetric anticlinal divisions in pericycle cell files at a distance of 250-350 µm from the initial cells. The visualization of the ARMs enabled the precise detection of cells involved in determining the site of LR primordium formation. A local ARM appeared in sister cells of the pericycle and endodermis files before the first division. Cortical cells contributed to LR development after the anticlinal divisions in the pericycle via the formation of an ARM. Exogenous auxins did not increase the total number of LRs and did not affect the LRI index. Although exogenous auxin transport inhibitors acted in different ways, they all reduced the number of LRs formed. Conclusions: Literature data, as well as results obtained in this study, suggest that the formation of a local ARM before the first anticlinal formative divisions is the common mechanism underlying LRI in flowering plants. We propose that the mechanisms of the regulation of root branching are independent of the position of the LRI site relative to the parental root tip.


Assuntos
Cucurbita/crescimento & desenvolvimento , Cucurbita/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Transporte Biológico/efeitos dos fármacos , Meristema/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
5.
Plants (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009056

RESUMO

CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function. In this review, we outline the current state of the art reached by the combination of these approaches over seven years. Additionally, we discuss the origins of different Agrobacterium rhizogenes strains that are widely used for hairy root transformation; the components of CRISPR/Cas vectors, such as the promoters that drive Cas or gRNA expression, the types of Cas nuclease, and selectable and screenable markers; and the application of CRISPR/Cas genome editing in hairy roots. The modification of the already known vector pKSE401 with the addition of the rice translational enhancer OsMac3 and the gene encoding the fluorescent protein DsRed1 is also described.

6.
Plants (Basel) ; 10(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34371624

RESUMO

The incredible success of crop breeding and agricultural innovation in the last century greatly contributed to the Green Revolution, which significantly increased yields and ensures food security, despite the population explosion. However, new challenges such as rapid climate change, deteriorating soil, and the accumulation of pollutants require much faster responses and more effective solutions that cannot be achieved through traditional breeding. Further prospects for increasing the efficiency of agriculture are undoubtedly associated with the inclusion in the breeding strategy of new knowledge obtained using high-throughput technologies and new tools in the future to ensure the design of new plant genomes and predict the desired phenotype. This article provides an overview of the current state of research in these areas, as well as the study of soil and plant microbiomes, and the prospective use of their potential in a new field of microbiome engineering. In terms of genomic and phenomic predictions, we also propose an integrated approach that combines high-density genotyping and high-throughput phenotyping techniques, which can improve the prediction accuracy of quantitative traits in crop species.

7.
Front Plant Sci ; 10: 365, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110507

RESUMO

While in most higher plants, including the model system Arabidopsis thaliana, the formation of lateral root primordia is induced in the elongation zone of the parental root, in seven plant families, including Cucurbitaceae, an alternative root branching mechanism is established such that lateral roots are initiated directly in the apical meristem of the parental root. In Arabidopsis, the transcription factor GATA23 and MEMBRANE-ASSOCIATED KINASE REGULATOR4 (MAKR4) are involved in the gene regulatory network of lateral root initiation. Among all marker genes examined, these are the earliest known marker genes up-regulated by auxin during lateral root initiation. In this study, putative functional orthologs of Arabidopsis GATA23 and MAKR4 were identified in cucumber (Cucumis sativus) and squash (Cucurbita pepo). Both cucurbits contained 26 genes encoding GATA family transcription factors and only one MAKR4 gene. Phylogenetic and transcriptional analysis of up-regulation by auxin led to the identification of GATA23 putative functional orthologs in Cucurbitaceae - CpGATA24 and CsGATA24. In squash, CpMAKR4 was up-regulated by naphthylacetic acid (NAA) and, similar to MAKR4 in Arabidopsis, indole-3-butyric acid (IBA). A detailed analysis of the expression pattern of CpGATA24 and CpMAKR4 in squash roots from founder cell specification until emergence of lateral root primordia was carried out using promoter-fluorescent reporter gene fusions and confocal microscopy. Their expression was induced in the protoxylem, and then expanded to founder cells in the pericycle. Thus, while the overall expression pattern of these genes was significantly different from that in Arabidopsis, in founder cells their expression was induced in the same order as in Arabidopsis. Altogether, these findings suggest that in Cucurbitaceae the putative functional orthologs of GATA23 and MAKR4 might play a role in founder cell specification and primordium positioning during lateral root initiation. The role of the protoxylem in auxin transport as a trigger of founder cells specification and lateral root initiation is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA