Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 89(8): 5896-5900, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38593206

RESUMO

The difluorination reaction of alkenes catalyzed by molecular iodine was revealed for the first time. This difluorination reaction affords a simple and practical experimental method and can be applied to many aliphatic and aromatic alkenes bearing synthetically useful functional groups, such as ester, amide, hydroxy, and aryl groups. Preliminary mechanistic studies of this alkene difluorination suggest the existence of two catalytic cycles: the IF-driven cycle and the catalytic cycle by the IF adduct.

2.
ACS Omega ; 9(19): 21127-21135, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764690

RESUMO

Red blood cell-inspired perfluorocarbon-encapsulated core-shell particles have been developed for biomedical applications. Although the use of perfluorodecalin (FDC) is expected for core-shell particles owing to its high oxygen solubility, the low solubility of FDC in any organic solvent, owing to its fluorous properties, prevents its use in core-shell particles. In this study, a new cosolvent system composed of dichloromethane (DCM) and heptafluoropropyl methyl ether (HFPME) was found to dissolve both FDC and fluorinated polyimide (FPI) based on a systematic study using a phase diagram, achieving a homogeneous disperse phase for emulsification composed of oxygen-permeable FPI and oxygen-soluble FDC. Using this novel cosolvent system and Shirasu porous glass (SPG) membrane emulsification, FDC-encapsulated FPI shell microparticles were successfully prepared for the first time. In addition to oxygenation, demonstrated using hypoxia-responsive HeLa cells, the fabricated core-shell microparticles exhibited monodispersity, excellent stability, biocompatibility, and oxygen capacity.

3.
Chem Sci ; 15(25): 9574-9581, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38939153

RESUMO

Alkali metal alkoxides play a pivotal role in nucleophilic alkoxylation reactions, offering pathways for the synthesis of ethers, including the increasingly sought-after trifluoromethyl ethers. However, the synthesis of long-chain perfluoroalkyl ethers remains a substantial challenge in this field. Through the innovative use of triglyme to encapsulate potassium ions, we enhanced the stability of short-lived, longer-chain perfluoroalkoxy anions, thereby facilitating efficient nucleophilic perfluoroalkoxylation reactions. This method provides a new precedent for the halo-perfluoroalkoxylation of gem-difluoroalkenes and offers a versatile tool for the design of perfluoroalkyl ethers, including those containing complex moieties of heterocycles and drug molecules. We also demonstrated the utility of the resulting halo-perfluoroalkoxyl adducts through various chemical transformations to valuable diverse perfluoroalkyl ethers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA