Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849140

RESUMO

Beta-adrenergic receptors (ß-AR) are expressed on the membranes of various cell types and their activation affects body water balance by modulating renal sodium and water excretion, cardiovascular function and metabolic processes. However, ß-AR-associated body fluid imbalance has not been well characterised. In the present study, we hypothesized that chronic ß-AR stimulation increases electrolyte and water content at the tissue level. We evaluated the effects of isoproterenol, a non-selective ß-AR agonist, on electrolyte and water balance at the tissue level. Continuous isoproterenol administration for 14 days induced cardiac hypertrophy, associated with sodium-driven water retention in the heart, increased the total body sodium, potassium and water contents at the tissue level, and increased the water intake and blood pressure of the mice. There was greater urine output in response to the isoproterenol-induced body water retention. These isoproterenol-induced changes were reduced by propranolol, a non-selective beta-receptor inhibitor. Isoproterenol-treated mice even without excessive water intake had higher total body electrolyte and water contents, and this tissue water retention was associated with lower dry body mass, suggesting that ß-AR stimulation in the absence of excess water intake induces catabolism and water retention. These findings suggest that ß-AR activation induces tissue sodium and potassium retention, leading to body fluid retention, with or without excess water intake. This characterisation of ß-AR-induced electrolyte and fluid abnormalities improves our understanding of the pharmacological effects of ß-AR inhibitors. Significance Statement We have shown that chronic ß-AR stimulation causes cardiac hypertrophy associated with sodium-driven water retention in the heart and increases the accumulation of body sodium, potassium and water at the tissue level. This characterisation of the ß-AR-induced abnormalities in electrolyte and water balance at the tissue level improves our understanding of the roles of ß-AR in physiology and pathophysiology and the pharmacological effects of ß-AR inhibitors.

2.
J Pharmacol Sci ; 154(4): 274-278, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485345

RESUMO

2-Deoxy-d-glucose (2DG) induces anticancer effects through glycolytic inhibition but it may raise the risk of arrhythmia. The rare monosaccharide d-allose also has anticancer properties, but its cardiac effects are unknown. We examined the effects of d-allose on adenosine triphosphate (ATP) production in neonatal rat cardiomyocytes. We showed that 25 mM d-allose selectively reduced glycolytic ATP, but had minimal impact on mitochondrial ATP, while 1 mM 2DG strongly inhibited both. Furthermore, d-allose had less impact on cell viability and was less cytotoxic than 2DG; neither compound caused apoptosis. Thus, d-allose selectively diminished glycolytic ATP production with no apparent effects on cardiomyocytes.


Assuntos
Trifosfato de Adenosina , Miócitos Cardíacos , Ratos , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Glucose/farmacologia
3.
Clin Sci (Lond) ; 137(9): 755-767, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37199255

RESUMO

Homeostasis of body fluid is a key component for maintaining health. An imbalance of body sodium and water causes various pathological states, such as dehydration, volume overload, hypertension, cardiovascular and renal diseases, and metabolic disorders. Conventional concepts regarding physiology and pathophysiology of body sodium and water balance have been established by several assumptions. These assumptions are that the kidneys are the master regulator of body sodium and water content, and that sodium moves inside the body in parallel with water. However, recent clinical and basic studies have proposed alternative concepts. These concepts are that body sodium and water balance are regulated by various organs and multiple factors, such as physical activity and the environment, and that sodium accumulates locally in tissues independently of the blood status and/or water. Various concerns remain unclear, and the regulatory mechanism of body sodium, fluid, and blood pressure needs to be readdressed. In the present review article, we discuss novel concepts regarding the regulation of body sodium, water, and blood pressure with a particular focus on the systemic water conservation system and fluid loss-triggered elevation in blood pressure.


Assuntos
Líquidos Corporais , Hipertensão , Humanos , Pressão Sanguínea/fisiologia , Sódio/metabolismo , Líquidos Corporais/metabolismo , Água
4.
Kidney Int ; 102(2): 242-247, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35671910

RESUMO

With evolution from water to land, the osmotic regulation of body fluids and cardiovascular systems of vertebrates evolved to cope with dryness and gravity. While aquatic vertebrates can use buoyancy to compensate for the effects of gravity, terrestrial vertebrates cannot and must circulate blood throughout their body-a necessity that likely led to the development of strong hearts and high blood pressure. These changes may be supported by anatomic evolution of the cardiovascular system and by functional evolution, with alterations in hormonal systems. Thus, during the evolution of terrestrial animals, increased performance of body functions to endure harsher environments was required, necessitating increased blood pressure. In an age of overeating and insufficient exercise, modern man does not fully use the high levels of physical functions acquired through evolution. Drastic changes in our living environment cause hypertension, the pathogenesis of which remains unknown. To survive in new environments, as might be expected in outer space or underwater, an understanding is required of how changes in blood pressure have occurred that enabled adaptation through evolution in vertebrates.


Assuntos
Evolução Biológica , Vertebrados , Adaptação Fisiológica/fisiologia , Animais , Biologia , Pressão Sanguínea , Humanos , Vertebrados/fisiologia
5.
J Pharmacol Sci ; 149(3): 115-123, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35641024

RESUMO

We have recently reported that the urea osmolyte-associated water conservation system is activated in fluid loss models such as high salt-induced natriuresis, renal injury-induced impaired renal concentrating ability, or skin barrier dysfunction-induced transepidermal water loss. The system consists of the interaction of multiple organs including renal urea recycling, hepato-muscular ureagenesis, and suppression of cardiovascular energy expenditure. Here, we determined the effect of pharmacological fluid loss induced by tolvaptan, a selective vasopressin V2 receptor antagonist, on water conservation. We evaluated the water conservation system in rats that consumed a control diet or a diet containing 0.1% tolvaptan. Tolvaptan increased urine volume on day 1, but this renal water loss then gradually decreased. Body water and osmolyte content were decreased by tolvaptan on day 1 but had normalized by day 7. Tolvaptan induced fluid loss on day 1, and the following restoration of body fluid on day 7 was associated with an increase in urea transporter A1-associated renal urea recycling. Tolvaptan did not affect hepato-muscular ureagenesis on day 1 and day 7, or cardiovascular energy expenditure during treatment. Thus, tolvaptan-induced fluid loss leads to activation of the water conservation system via renal urea recycling.


Assuntos
Líquidos Corporais , Conservação dos Recursos Hídricos , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico , Benzazepinas/farmacologia , Ratos , Tolvaptan , Ureia , Água
6.
Pflugers Arch ; 473(6): 897-910, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34028587

RESUMO

We discovered high Na+ and water content in the skin of newborn Sprague-Dawley rats, which reduced ~ 2.5-fold by 7 days of age, indicating rapid changes in extracellular volume (ECV). Equivalent changes in ECV post birth were also observed in C57Bl/6 J mice, with a fourfold reduction over 7 days, to approximately adult levels. This established the generality of increased ECV at birth. We investigated early sodium and water handling in neonates from a second rat strain, Fischer, and an Hsd11b2-knockout rat modelling the syndrome of apparent mineralocorticoid excess (SAME). Despite Hsd11b2-/- animals exhibiting lower skin Na+ and water levels than controls at birth, they retained ~ 30% higher Na+ content in their pelts at the expense of K+ thereafter. Hsd11b2-/- neonates exhibited incipient hypokalaemia from 15 days of age and became increasingly polydipsic and polyuric from weaning. As with adults, they excreted a high proportion of ingested Na+ through the kidney, (56.15 ± 8.21% versus control 34.15 ± 8.23%; n = 4; P < 0.0001), suggesting that changes in nephron electrolyte transporters identified in adults, by RNA-seq analysis, occur by 4 weeks of age. Our data reveal that Na+ imbalance in the Hsd11b2-/- neonate leads to excess Na+ storage in skin and incipient hypokalaemia, which, together with increased, glucocorticoid-induced Na+ uptake in the kidney, then contribute to progressive, volume contracted, salt-sensitive hypertension. Skin Na+ plays an important role in the development of SAME but, equally, may play a key physiological role at birth, supporting post-natal growth, as an innate barrier to infection or as a rudimentary kidney.


Assuntos
Pressão Sanguínea , Síndrome de Excesso Aparente de Minerolocorticoides/metabolismo , Pele/metabolismo , Sódio/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Animais , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Síndrome de Excesso Aparente de Minerolocorticoides/genética , Síndrome de Excesso Aparente de Minerolocorticoides/fisiopatologia , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley
7.
Am J Physiol Renal Physiol ; 321(2): F170-F178, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34180718

RESUMO

Pericytes play an important role in the recovery process after ischemic injury of many tissues. Brain pericytes in the peri-infarct area express macrophage markers in response to injury stimuli and are involved in neovascularization. In the kidney, nerve/glial antigen 2 (NG2)+ pericytes have been found to accumulate after renal injury. These accumulated NG2+ cells are not involved in scar formation. However, the role of accumulated NG2+ cells in injured kidneys remains unknown. Here, using a reversible ischemia-reperfusion (I/R) model, we found that renal NG2+ cells were increased in injured kidneys and expressed macrophage markers (CD11b or F4/80) on day 3 after reperfusion. Isolated NG2+ cells from I/R kidneys also had phagocytic activity and expressed anti-inflammatory cytokine genes, including mannose receptor and IL-10. These macrophage-like NG2+ cells did not likely differentiate into myofibroblasts because they did not increase α-smooth muscle actin expression. Intravenous transfusion of renal NG2+ cells isolated from donor mice on day 3 after reperfusion into recipient mice on day 1 after I/R surgery revealed that NG2+ cell-injected mice had lower plasma blood urea nitrogen, reduced kidney injury molecule-1 mRNA expression, ameliorated renal damage, and reduced cellular debris accumulation compared with PBS-injected mice on day 5 after reperfusion. In conclusion, these data suggest that renal NG2+ cells have an M2 macrophage-like ability and play a novel role in facilitating the recovery process after renal I/R injury.NEW & NOTEWORTHY Brain pericytes have macrophage-like activities after injury. However, such properties of pericytes in peripheral tissues have not been investigated. Here, we provide evidence that nerve/glial antigen 2-positive cells increase after renal injury. The population of nerve/glial antigen 2-positive cells, which does not increase expression of myofibroblast-associated gene, express macrophage markers and anti-inflammatory cytokine genes, have phagocytic activity, and play a role in renal recovery after kidney injury.


Assuntos
Antígenos/metabolismo , Isquemia/metabolismo , Rim/metabolismo , Macrófagos/metabolismo , Proteoglicanas/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Isquemia/patologia , Rim/patologia , Macrófagos/patologia , Masculino , Camundongos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fagocitose/fisiologia , Fenótipo , Traumatismo por Reperfusão/patologia
8.
J Pharmacol Sci ; 147(3): 245-250, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34507633

RESUMO

Sodium/glucose cotransporter 2 (SGLT2) is a renal low-affinity high-capacity sodium/glucose cotransporter expressed in the apical membrane of the early segment of proximal tubules. SGLT2 reabsorbs filtered glucose in the kidney, and its inhibitors represent a new class of oral medications used for type 2 diabetes mellitus, which act by increasing glucose and sodium excretion in urine, thereby reducing blood glucose levels. However, clinical trials showed marked improvement of renal outcomes, even in nondiabetic kidney diseases, although the underlying mechanism of this renoprotective effect is unclear. We showed that long-term excretion of salt by the kidneys, which predisposes to osmotic diuresis and water loss, induces a systemic body response for water conservation. The energy-intensive nature of water conservation leads to a reprioritization of systemic body energy metabolism. According to current data, use of SGLT2 inhibitors may result in similar reprioritization of energy metabolism to prevent dehydration. In this review article, we discuss the beneficial effects of SGLT2 inhibition from the perspective of energy metabolism and water conservation.


Assuntos
Água Corporal/metabolismo , Metabolismo Energético/efeitos dos fármacos , Rim/metabolismo , Florizina/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/fisiologia , Administração Oral , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diurese , Glucose/metabolismo , Humanos , Hipoglicemiantes , Túbulos Renais Proximais/metabolismo , Malus/química , Osmose , Florizina/administração & dosagem , Fitoterapia , Sódio/metabolismo , Sódio/urina
9.
J Pharmacol Sci ; 146(2): 98-104, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33941326

RESUMO

Hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitors were developed for treatment of renal anemia. Patients applicable for HIF-PHD inhibitor treatment experience complications such as chronic kidney disease, whereby water and electrolyte homeostasis is disrupted. The effects of hypoxia-inducible factor stabilization on salt accumulation in the setting of reduced renal function remain unclear. In the present study, we investigated the effect of a HIF-PHD inhibitor, molidustat, on salt distribution and excretion in rats with subtotal nephrectomy-induced chronic kidney disease. Male Wistar rats were subjected to 5/6 nephrectomy. After confirming blood pressure elevation (>150 mmHg, at 4 weeks after surgery), rats were treated with molidustat. After 1 week of treatment, molidustat did not significantly improve blood cell volume or blood pressure. Distribution of sodium, potassium, and water in skin, carcass, and bone samples was not affected by molidustat. Furthermore, molidustat had no significant effect on urinary sodium excretion or concentration in response to acute oral salt loading (1 g/kg). In conclusion, molidustat did not affect distribution or excretion of salt in rats subjected to a model of nephron loss.


Assuntos
Hipertensão/metabolismo , Nefrectomia/efeitos adversos , Inibidores de Prolil-Hidrolase/farmacologia , Pirazóis/farmacologia , Insuficiência Renal Crônica/metabolismo , Sódio/metabolismo , Triazóis/farmacologia , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Masculino , Ratos Wistar , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/fisiopatologia , Sódio/urina
10.
J Am Soc Nephrol ; 31(9): 2013-2024, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32611589

RESUMO

BACKGROUND: IgA nephropathy (IgAN) begins with aberrant IgA deposition in glomeruli, progresses to IgM/IgG/complement codeposition, and results in chronic inflammation and glomerular damage. However, the mechanism that drives such phlogogenic cascade has been unclear. Recently, apoptosis inhibitor of macrophage (AIM) protein was shown to modulate macrophages' function in various pathologic conditions, thereby profoundly affecting the progression of renal disorders, including AKI. A spontaneous IgAN model, grouped ddY (gddY) mouse, revealed the requirement of AIM for the overall inflammatory glomerular injury following IgA deposition. METHODS: We established an AIM-deficient IgAN model (AIM-/- gddY) using CRISPR/Cas9 and compared its phenotype with that of wild-type gddY with or without recombinant AIM administration. An IgA-deficient IgAN model (IgA-/- gddY) was also generated to further determine the role of AIM. RESULTS: In both human and murine IgAN, AIM colocalized with IgA/IgM/IgG in glomeruli, whereas control kidneys did not exhibit AIM deposition. Although AIM-/- gddY showed IgA deposition at levels comparable with those of wild-type gddY, they did not exhibit glomerular accumulation of IgM/IgG complements, CD45+ leukocyte infiltration, and upregulation of inflammatory/fibrogenic genes, indicating protection from glomerular lesions and proteinuria/hematuria. Recombinant AIM administration reconstituted the IgAN phenotype, resulting in IgM/IgG/complement IgA codeposition. Neither spontaneous IgM/IgG codeposition nor disease was observed in IgA-/- gddY mice. CONCLUSIONS: AIM may contribute to stable immune complex formation in glomeruli, thereby facilitating IgAN progression. Therefore, AIM deposition blockage or disassociation from IgM/IgG may present a new therapeutic target on the basis of its role in IgAN inflammation initiation.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Glomerulonefrite por IGA/complicações , Inflamação/etiologia , Glomérulos Renais/patologia , Receptores Depuradores/fisiologia , Animais , Ativação do Complemento , Glomerulonefrite por IGA/patologia , Humanos , Imunoglobulina A/metabolismo , Glomérulos Renais/imunologia , Camundongos , Camundongos Endogâmicos BALB C
11.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669786

RESUMO

We investigated the effects of esaxerenone, a novel, nonsteroidal, and selective mineralocorticoid receptor blocker, on cardiac function in Dahl salt-sensitive (DSS) rats. We provided 6-week-old DSS rats a high-salt diet (HSD, 8% NaCl). Following six weeks of HSD feeding (establishment of cardiac hypertrophy), we divided the animals into the following two groups: HSD or HSD + esaxerenone (0.001%, w/w). In survival study, all HSD-fed animals died by 24 weeks of age, whereas the esaxerenone-treated HSD-fed animals showed significantly improved survival. We used the same protocol with a separate set of animals to evaluate the cardiac function by echocardiography after four weeks of treatment. The results showed that HSD-fed animals developed cardiac dysfunction as evidenced by reduced stroke volume, ejection fraction, and cardiac output. Importantly, esaxerenone treatment decreased the worsening of cardiac dysfunction concomitant with a significantly reduced level of systolic blood pressure. In addition, treatment with esaxerenone in HSD-fed DSS rats caused a reduced level of cardiac remodeling as well as fibrosis. Furthermore, inflammation and oxidative stress were significantly reduced. These data indicate that esaxerenone has the potential to mitigate cardiac dysfunction in salt-induced myocardial injury in rats.


Assuntos
Cardiotônicos/uso terapêutico , Hipertensão/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Pirróis/uso terapêutico , Receptores de Mineralocorticoides/metabolismo , Sulfonas/uso terapêutico , Animais , Cardiotônicos/farmacologia , Eletrocardiografia , Fibrose , Hipertensão/diagnóstico por imagem , Hipertensão/fisiopatologia , Inflamação/complicações , Inflamação/tratamento farmacológico , Masculino , Pirróis/farmacologia , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta , Sulfonas/farmacologia , Análise de Sobrevida , Remodelação Ventricular/efeitos dos fármacos
12.
Kidney Int ; 97(5): 904-912, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32107020

RESUMO

Sustained oliguria during fluid resuscitation represents a perplexing problem in patients undergoing therapy for septic acute kidney injury. Here, we tested whether lipopolysaccharide induces filtrate leakage from the proximal tubular lumen into the interstitium, thus disturbing the recovery of urine output during therapy, such as fluid resuscitation, aiming to restore the glomerular filtration rate. Intravital imaging of the tubular flow rate in the proximal tubules in mice showed that lipopolysaccharide did not change the inflow rate of proximal tubule filtrate, reflecting an unchanged glomerular filtration rate, but significantly reduced the outflow rate, resulting in oliguria. Lipopolysaccharide disrupted tight junctions in proximal tubules and induced both paracellular leakage of filtered molecules and interstitial accumulation of extracellular fluid. These changes were diminished by conditional knockout of Toll-like receptor 4 in the proximal tubules. Importantly, these conditional knockout mice showed increased sensitivity to fluid resuscitation and attenuated acute kidney injury. Thus, lipopolysaccharide induced paracellular leakage of filtrate into the interstitium via a Toll-like receptor 4-dependent mechanism in the proximal tubules of endotoxemic mice. Hence, this leakage might diminish the efficacy of fluid resuscitation aiming to maintain renal hemodynamics and glomerular filtration rate.


Assuntos
Lipopolissacarídeos , Receptor 4 Toll-Like , Animais , Hidratação , Taxa de Filtração Glomerular , Humanos , Túbulos Renais , Túbulos Renais Proximais , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Receptor 4 Toll-Like/genética
13.
Kidney Int ; 85(4): 871-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24336034

RESUMO

The cyclin-dependent kinase inhibitor p21 plays important roles in chronic renal disorders; however, its roles in response to acute renal stress are unclear. Here we evaluated p21 in acute kidney injury and ischemic preconditioning using wild-type and p21 knockout mice that underwent renal ischemia followed by reperfusion. The decline in renal function and histological changes were worse in the knockout than in wild-type mice. Ischemia/reperfusion increased p21 expression in the kidney of wild-type mice compared with sham surgery, suggesting p21 may confer tolerance to ischemia/reperfusion injury. We next tested whether p21 is associated with the protective effect of ischemic preconditioning, an established method to reduce ischemia/reperfusion injury. Ischemic preconditioning attenuated ischemia/reperfusion injury in wild-type but not p21-knockout mice. This preconditioning decreased the number of proliferating tubular cells before but increased them at 24 h after ischemia/reperfusion in the kidneys of wild-type mice. In p21-knockout mice, ischemic preconditioning did not change the number of proliferating cells before but decreased them after ischemia/reperfusion. Ischemic preconditioning increased renal p21 expression and the number of cells in the G1 phase of the cell cycle before ischemia/reperfusion compared with sham surgery. Thus, renal p21 is essential for the beneficial effects of renal ischemic preconditioning. Transient cell cycle arrest induced by ischemic preconditioning by a p21-dependent pathway seems to be important for subsequent tubular cell proliferation after ischemia/reperfusion.


Assuntos
Injúria Renal Aguda/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Precondicionamento Isquêmico , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/prevenção & controle , Animais , Pontos de Checagem do Ciclo Celular , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/prevenção & controle
14.
Clin Exp Pharmacol Physiol ; 41(3): 227-37, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24471737

RESUMO

1. The aim of the present study was to test the hypothesis that increasing kidney tissue concentrations of epoxyeicosatrienoic acids (EETs) by preventing their degradation to the biologically inactive dihydroxyeicosatrienoic acids (DHETEs) using blockade of soluble epoxide hydrolase (sEH) would attenuate the progression of chronic kidney disease (CKD). 2. Ren-2 transgenic rats (TGR) after 5/6 renal mass reduction (5/6 NX) served as a model of CKD associated with angiotensin (Ang) II-dependent hypertension. Soluble epoxide hydrolase was inhibited using cis-4-[4-(3-adamantan-1-yl-ureido)cyclohexyloxy]benzoic acid (c-AUCB; 3 mg/L drinking water) for 20 weeks after 5/6 NX. Sham-operated normotensive transgene-negative Hannover Sprague-Dawley (HanSD) rats served as controls. 3. When applied in TGR subjected to 5/6 NX, c-AUCB treatment improved survival rate, prevented the increase in blood pressure, retarded the progression of cardiac hypertrophy, reduced proteinuria and the degree of glomerular and tubulointerstitial injury and reduced glomerular volume. All these organ-protective actions were associated with normalization of the intrarenal EETs:DHETEs ratio, an index of the availability of biologically active EETs, to levels observed in sham-operated HanSD rats. There were no significant concurrent changes of increased intrarenal AngII content. 4. Together, these results show that 5/6 NX TGR exhibit a profound deficiency of intrarenal availability of active epoxygenase metabolites (EETs), which probably contributes to the progression of CKD in this model of AngII-dependent hypertension, and that restoration of intrarenal availability of EETs using long-term c-AUCB treatment exhibits substantial renoprotective actions.


Assuntos
Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Hipertensão/metabolismo , Ratos Transgênicos/metabolismo , Angiotensina II/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Feminino , Hipertensão/tratamento farmacológico , Nefrectomia/métodos , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Taxa de Sobrevida
15.
Hypertension ; 81(3): 468-475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37942635

RESUMO

Previous basic and clinical investigations have identified various pathogenic factors and determinants of risk that contribute to hypertension. Nevertheless, the pathogenesis of hypertension has not been fully elucidated. Moreover, despite the availability of antihypertensive medications for the management of blood pressure, treatments that address the full spectrum of the pathophysiological defects underpinning hypertension remain to be identified. To further investigate the mechanisms of primary hypertension, it is imperative to consider novel potential aspects, such as fluid management by the skin, in addition to the conventional risk factors. There is a close association between body fluid regulation and blood pressure, and the kidney, which, as the principal organ responsible for body fluid homeostasis, is the primary target for research in the field of hypertension. In addition, the skin functions as a biological barrier, potentially contributing to body fluid regulation. In this review, we propose the hypothesis that changes in skin water conservation are associated with hypertension risk based on recent findings. Further studies are required to clarify whether this novel hypothesis is limited to specific hypertension or applies to physiological blood pressure regulation.


Assuntos
Conservação dos Recursos Hídricos , Hipertensão , Humanos , Hipertensão/epidemiologia , Hipertensão/etiologia , Hipertensão/tratamento farmacológico , Pressão Sanguínea/fisiologia , Anti-Hipertensivos/uso terapêutico , Anti-Hipertensivos/farmacologia , Rim
16.
Hypertens Res ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760521

RESUMO

Renal denervation has attracted attention as a novel antihypertensive treatment for hypertensive patients who are poorly controlled by medicine. Clinical studies have shown the antihypertensive effects of renal denervation in patients with treatment-resistant hypertension. However, renal denervation potentially has other beneficial effects, such as improving glucose metabolism and cardioprotection beyond its antihypertensive effects. In this mini-review article, we summarize and discuss the effects of renal denervation on proteinuria, albuminuria, and renal function based on the recent findings of clinical studies, and review the renoprotective effects of renal denervation.

17.
Hypertens Res ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355818

RESUMO

Renal denervation (RDN) has emerged as a novel therapy for drug-resistant hypertension. We here examined the effects of RDN at early versus advanced stages of hypertension on blood pressure and organ pathology in rats with salt-sensitive hypertension. Dahl salt-sensitive (DahlS) rats fed an 8% NaCl diet from 6 weeks of age were subjected to RDN (surgical ablation and application of 10% phenol in ethanol) or sham surgery at 7 (early stage) or 9 (advanced stage) weeks and were studied at 12 weeks. RDN at early or advanced stages resulted in a moderate lowering of blood pressure. Although RDN at neither stage affected left ventricular (LV) and cardiomyocyte hypertrophy, it ameliorated LV diastolic dysfunction, fibrosis, and inflammation at both stages. Intervention at both stages also attenuated renal injury as well as downregulated the expression of angiotensinogen and angiotensin-converting enzyme (ACE) genes and angiotensin II type 1 receptor protein in the kidney. Furthermore, RDN at both stages inhibited proinflammatory gene expression in adipose tissue. The early intervention reduced both visceral fat mass and adipocyte size in association with downregulation of angiotensinogen and ACE gene expression. In contrast, the late intervention increased fat mass without affecting adipocyte size as well as attenuated angiotensinogen and ACE gene expression. Our results thus indicate that RDN at early or late stages after salt loading moderately alleviated hypertension and substantially ameliorated cardiac and renal injury and adipose tissue inflammation in DahlS rats. They also suggest that cross talk among the kidney, cardiovascular system, and adipose tissue may contribute to salt-sensitive hypertension. Supposed mechanism for the beneficial effects of RDN on hypertension and target organ damage in DahlS rats. RDN at early or late stages after salt loading moderately alleviated hypertension and substantially ameliorated renal injury in DahlS rats. Cross talk among the kidney, cardiovascular system, and adipose tissue possibly mediated by circulating RAS may contribute to salt-sensitive hypertension. LV; left ventricular, NE; norepinephrine, RAS; renin-angiotensin system, RDN; renal denervation.

18.
Hypertens Res ; 47(1): 6-32, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37710033

RESUMO

Total 276 manuscripts were published in Hypertension Research in 2022. Here our editorial members picked up the excellent papers, summarized the current topics from the published papers and discussed future perspectives in the sixteen fields. We hope you enjoy our special feature, 2023 update and perspectives in Hypertension Research.


Assuntos
Hipertensão , Fator de Impacto de Revistas , Humanos , Hipertensão/terapia
19.
J Am Coll Cardiol ; 83(15): 1386-1398, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38599715

RESUMO

BACKGROUND: Sodium-glucose cotransporter 2 inhibitors are believed to improve cardiac outcomes due to their osmotic diuretic potential. OBJECTIVES: The goal of this study was to test the hypothesis that vasopressin-driven urine concentration overrides the osmotic diuretic effect of glucosuria induced by dapagliflozin treatment. METHODS: DAPA-Shuttle1 (Hepato-renal Regulation of Water Conservation in Heart Failure Patients With SGLT-2 Inhibitor Treatment) was a single-center, double-blind, randomized, placebo-controlled trial, in which patients with chronic heart failure NYHA functional classes I/II and reduced ejection fraction were randomly assigned to receive dapagliflozin 10 mg daily or placebo (1:1) for 4 weeks. The primary endpoint was change from baseline in urine osmolyte concentration. Secondary endpoints included changes in copeptin levels and solute free water clearance. RESULTS: Thirty-three randomized, sodium-glucose cotransporter 2 inhibitor-naïve participants completed the study, 29 of whom (placebo: n = 14; dapagliflozin: n = 15) provided accurate 24-hour urine collections (mean age 59 ± 14 years; left ventricular ejection fraction 31% ± 9%). Dapagliflozin treatment led to an isolated increase in urine glucose excretion by 3.3 mmol/kg/d (95% CI: 2.51-4.04; P < 0.0001) within 48 hours (early) which persisted after 4 weeks (late; 2.7 mmol/kg/d [95% CI: 1.98-3.51]; P < 0.0001). Dapagliflozin treatment increased serum copeptin early (5.5 pmol/L [95% CI: 0.45-10.5]; P < 0.05) and late (7.8 pmol/L [95% CI: 2.77-12.81]; P < 0.01), leading to proportional reductions in free water clearance (early: -9.1 mL/kg/d [95% CI: -14 to -4.12; P < 0.001]; late: -11.0 mL/kg/d [95% CI: -15.94 to -6.07; P < 0.0001]) and elevated urine concentrations (late: 134 mmol/L [95% CI: 39.28-229.12]; P < 0.01). Therefore, urine volume did not significantly increase with dapagliflozin (mean difference early: 2.8 mL/kg/d [95% CI: -1.97 to 7.48; P = 0.25]; mean difference late: 0.9 mL/kg/d [95% CI: -3.83 to 5.62]; P = 0.70). CONCLUSIONS: Physiological-adaptive water conservation eliminated the expected osmotic diuretic potential of dapagliflozin and thereby prevented a glucose-driven increase in urine volume of approximately 10 mL/kg/d · 75 kg = 750 mL/kg/d. (Hepato-renal Regulation of Water Conservation in Heart Failure Patients With SGLT-2 Inhibitor Treatment [DAPA-Shuttle1]; NCT04080518).


Assuntos
Compostos Benzidrílicos , Conservação dos Recursos Hídricos , Diurese , Glucosídeos , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Idoso , Humanos , Pessoa de Meia-Idade , Diuréticos Osmóticos/farmacologia , Diuréticos Osmóticos/uso terapêutico , Transportador 2 de Glucose-Sódio , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Volume Sistólico , Função Ventricular Esquerda , Água
20.
Circulation ; 125(11): 1402-13, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22328542

RESUMO

BACKGROUND: The presence of chronic kidney disease is a significant independent risk factor for poor prognosis in patients with chronic heart failure. However, the mechanisms and mediators underlying this interaction are poorly understood. In this study, we tested our hypothesis that chronic cardiac volume overload leads to de novo renal dysfunction by coactivating the sympathetic nervous system and renin-angiotensin system in the kidney. We also examined the therapeutic potential of renal denervation and renin-angiotensin system inhibition to suppress renal injury in chronic heart failure. METHODS AND RESULTS: Sprague-Dawley rats underwent aortic regurgitation and were treated for 6 months with vehicle, olmesartan (an angiotensin II receptor blocker), or hydralazine. At 6 months, albuminuria and glomerular podocyte injury were significantly increased in aortic regurgitation rats. These changes were associated with increased urinary angiotensinogen excretion, kidney angiotensin II and norepinephrine (NE) levels, and enhanced angiotensinogen and angiotensin type 1a receptor gene expression and oxidative stress in renal cortical tissues. Aortic regurgitation rats with renal denervation had decreased albuminuria and glomerular podocyte injury, which were associated with reduced kidney NE, angiotensinogen, angiotensin II, and oxidative stress. Renal denervation combined with olmesartan prevented podocyte injury and albuminuria induced by aortic regurgitation. CONCLUSIONS: In this chronic cardiac volume-overload animal model, activation of the sympathetic nervous system augments kidney renin-angiotensin system and oxidative stress, which act as crucial cardiorenal mediators. Renal denervation and olmesartan prevent the onset and progression of renal injury, providing new insight into the treatment of cardiorenal syndrome.


Assuntos
Albuminúria/prevenção & controle , Insuficiência da Valva Aórtica/prevenção & controle , Rim/inervação , Podócitos/patologia , Simpatectomia , Albuminúria/complicações , Albuminúria/patologia , Animais , Insuficiência da Valva Aórtica/complicações , Insuficiência da Valva Aórtica/patologia , Linhagem Celular Transformada , Humanos , Rim/patologia , Rim/fisiologia , Masculino , Podócitos/fisiologia , Ratos , Ratos Sprague-Dawley , Simpatectomia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA