Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 526
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38117077

RESUMO

During endochondral ossification, chondrocytes secrete a proteoglycan (PG)-rich extracellular matrix that can inhibit the process of cartilage maturation, including expression of Ihh and Col10a1. Because bone morphogenetic proteins (BMPs) can promote cartilage maturation, we hypothesized that cartilage PGs normally inhibit BMP signalling. Accordingly, BMP signalling was evaluated in chondrocytes of wild-type and PG mutant (fam20b-/-) zebrafish and inhibited with temporal control using the drug DMH1 or an inducible dominant-negative BMP receptor transgene (dnBMPR). Compared with wild type, phospho-Smad1/5/9, but not phospho-p38, was increased in fam20b-/- chondrocytes, but only after they secreted PGs. Phospho-Smad1/5/9 was decreased in DMH1-treated or dnBMPR-activated wild-type chondrocytes, and DMH1 also decreased phospho-p38 levels. ihha and col10a1a were decreased in DMH1-treated or dnBMPR-activated chondrocytes, and less perichondral bone formed. Finally, early ihha and col10a1a expression and early perichondral bone formation of fam20b mutants were rescued with DMH1 treatment or dnBMPR activation. Therefore, PG inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification, and these results offer hope for the development of growth factor therapies for skeletal defects of PG diseases.


Assuntos
Osteogênese , Proteoglicanas , Animais , Osteogênese/genética , Proteoglicanas/genética , Proteoglicanas/metabolismo , Peixe-Zebra/genética , Cartilagem/metabolismo , Condrócitos/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo
2.
Nano Lett ; 24(35): 11108-11115, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39172732

RESUMO

An advanced materials solution utilizing the concept of "smart catalysts" could be a game changer for today's automotive emission control technology, enabling the efficient use of precious metals via their two-way switching between metallic nanoparticle forms and ionic states in the host perovskite lattice as a result of the cyclical oxidizing/reducing atmospheres. However, direct evidence for such processes remains scarce; therefore, the underlying mechanism has been an unsettled debate. Here, we use advanced scanning transmission electron microscopy to reveal the atomic-scale behaviors for a LaFe0.95Pd0.05O3-supported Ir-Pd-Ru nanocatalyst under fluctuating redox conditions, thereby proving the reversible dissolution/exsolution for Ir and Ru but with a limited occurrence for Pd. Despite such selective dissolution during oxidation, all three elements remain cooperatively alloyed in the subsequent reduction, which is a key factor in preserving the catalytic activity of the ternary nanoalloy while displaying its self-regenerating functionality and control of particle agglomeration.

3.
J Am Chem Soc ; 146(19): 12950-12957, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38693778

RESUMO

Metal-organic framework (MOF) glasses have emerged as a new class of organic-inorganic hybrid glass materials. Considerable efforts have been devoted to unraveling the macroscopic dynamics of MOF glasses by studying their rheological behavior; however, their microscopic dynamics remain unclear. In this work, we studied the effect of vitrification on linker dynamics in ZIF-62 by solid-state 2H nuclear magnetic resonance (NMR) spectroscopy. 2H NMR relaxation analysis provided a detailed picture of the mobility of the ZIF-62 linkers, including local restricted librations and a large-amplitude twist; these details were verified by molecular dynamics. A comparison of ZIF-62 crystals and glasses revealed that vitrification does not drastically affect the fast individual flipping motions with large-amplitude twists, whereas it facilitates slow cooperative large-amplitude twist motions with a decrease in the activation barrier. These observations support the findings of previous studies, indicating that glassy ZIF-62 retains permanent porosity and that short-range disorder exists in the alignment of ligands because of distortion of the coordination angle.

4.
J Am Chem Soc ; 146(1): 181-186, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153046

RESUMO

High-entropy oxide nanoparticles (HEO NPs) have been intensively studied because of their attractive properties, such as high stability and enhanced catalytic activity. In this work, for the first time, denary HEO NPs were successfully synthesized using a continuous supercritical hydrothermal flow process without calcination. Interestingly, this process allows the formation of HEO NPs on the order of seconds at a relatively lower temperature. The synthesized HEO NPs contained 10 metal elements, La, Ca, Sr, Ba, Fe, Mn, Co, Ru, Pd, and Ir, and had a perovskite-type structure. Atomic-resolution high-angle annular dark-field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements revealed homogeneous dispersion of the 10 metal elements. The obtained HEO NPs also exhibited a higher catalytic activity for the CO oxidation reaction than that of the LaFeO3 NPs.

5.
Chemistry ; : e202402583, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276344

RESUMO

Molecular one-dimensional (1D) electron systems have attracted much attention due to their unique electronic state, physical and chemical properties derived from high-aspect-ratio structures. Among 1D materials, mixed-valence halogen-bridged transition-metal chain complexes (MX-chains) based on coordination assemblies are currently of particular interest because their electronic properties, such as mixed-valence state and band gap, can be controlled by substituting components and varying configurations. In particular, chemistry has recently noted that dimensionally extending MX-chains through organic rung ligands can introduce and modulate electronic coupling of metal atoms between chains, i.e., interchain interactions. In this review, for the first time, we highlight the recent progress on MX systems from the viewpoint of dimensionally extending from 1D chain to ladder and nanotube, mainly involving structural design and electronic properties. Overall, dimensional extension can not only tune the electronic properties of MX-chain, but also build the unique platform for studying transport dynamics in confined space, such as proton conduction. Based on these features, we envision that the MX-chain systems provide valuable insights into deep understanding of 1D electron systems, as well as the potential applications such as nanoelectronics.

6.
Chemistry ; : e202402896, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289889

RESUMO

Although metal-organic frameworks (MOFs) and metalo hydrogen-bonded organic frameworks (MHOFs) are designed as promising solid-state proton conductors by incorporating various protonic species intrinsically or extrinsically, design and development of such materials by employing the concept of proton conduction through coordinated polar protic solvent is largely unexplored. Herein, we have constructed two proton-conducting materials having different solvent coordinated metal cationic species: In-H2O-MOF, ({[In(H2O)6][In3(Pzdc)6]·15H2O}n; H2Pzdc: pyrazine-2,3-dicarboxylic acid) with coordinated water molecules from hexaaquaindium cationic species, and MHOF-4, ([{Co(NH3)6}2(2,6-NDS)2(H2O)2]n; 2,6-H2NDS: 2,6-naphthalenedisulfonic acid) with coordinated ammonia from hexaammoniacobalt cationic species. Interestingly, higher proton conductivity was achieved for In-H2O-MOF (1.5 × 10-5 S cm-1) than MHOF-4 (6.3 × 10-6 S cm-1) under the extreme conditions (80 ºC and 95% RH), which could be attributed to enhanced acidity of coordinated water molecules having much lower pKa value than that of coordinated ammonia. Greater charge polarization on hydrogen atoms of In3+-coordinated water molecules than that of Co2+-coordinated ammonia led to the high conductivity of In-H2O-MOF, as evident by quantum chemical studies. Such a comparative study on metal-coordinated protic polar solvents in achieving proton conduction in crystalline solids is yet to be made.

7.
Inorg Chem ; 63(9): 4196-4203, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38377386

RESUMO

We report on a new organic conductor κ″-(ET)2Cu[N(CN)2]Br (κ″-Br), which is the first polymorph of an organic superconductor κ-(ET)2Cu[N(CN)2]Br (κ-Br), where ET denotes bis(ethylenedithio)tetrathiafulvalene. κ″-Br has a similar κ-type arrangement of ET molecules to κ-Br, but, in contrast to the orthorhombic κ-Br, which has ordered polyanion chains, presents a monoclinic crystal structure with disordered polymeric anion chains. To elucidate the electronic state of κ″-Br, we performed band calculations as well as transport, magnetic, and optical measurements. The calculated band dispersion, magnitude of electron correlation, and room-temperature optical conductivity spectra of κ″-Br were comparable to those of κ-Br. Despite these similarities, the κ″-Br salt exhibited a semiconducting behavior. The electron spin resonance and Raman spectroscopies indicated that there is neither magnetic nor charge order in κ″-Br, suggesting the occurrence of Anderson localization due to disordered anion layers.

8.
Inorg Chem ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39288168

RESUMO

A series of hybrids comprising two metal (Mn, Fe, and In) tetraphenylporphyrins axially substituted with anionic bidentate trans-thioindigo ligands (TI) were obtained. Substitution of the axial chloride anion by an oxygen atom of the dye forms short M-O bonds. Crystalline binuclear assemblies (TI•-)·{[MnIITPP]0·[MnIIITPP]+}·xC6H4Cl2 (x = 2 for 1 or 1 for 2) and (TI2-){[MIIITPP]+}2·xC6H4Cl2 (M = Fe and x = 2 for 3, M = In and x = 1 for 4) were synthesized. The thioindigo (TI2-) dianion and metal (FeIII and InIII) atoms in TPPs maintain their initial charge states during the formation of 3 and 4, allowing the separation of paramagnetic FeIII or diamagnetic InIII ions by a diamagnetic TI2- bridge. Strong antiferromagnetic coupling is observed between FeIII (S = 5/2) centers in complex 3. Partial reduction of MnIII to MnII occurs upon the formation of 1 and 2, leading to assemblies containing three paramagnetic centers: MnII (S = 5/2), MnIII (S = 2), and TI•- radical anion (S = 1/2). Orthogonal arrangement of TPP and TI molecules in 1 provides strong ferromagnetic coupling. Weak antiferromagnetic coupling is realized in 2 due to the rotation of the TI bridge.

9.
Phys Chem Chem Phys ; 26(18): 13675-13682, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38654606

RESUMO

In our preceding paper (Y. Fukui et al., Phys. Chem. Chem. Phys., 2023, 25, 25594-25602), we reported a systematic study of the Ag+-ion conducting behaviour of silver iodide (AgI)-loaded mesoporous aluminas (MPAs) with different pore diameters and AgI-loading ratios. By optimising the control parameters, the Ag+-ion conductivity has reached 7.2 × 10-4 S cm-1 at room temperature, which is more than three orders of magnitude higher than that of bulk AgI. In the present study, the effect of silver bromide (AgBr)-doping in the AgI/MPA composites on Ag+-ion conductivity is systematically investigated for the first time, using variable-temperature powder X-ray diffraction, differential scanning calorimetry, and electrochemical impedance spectroscopy measurements. The AgBr-doped AgI/MPA composites, AgI-AgBr/MPA, formed a homogeneous ß/γ-AgI-structured solid solution (ß/γ-AgIss) for the composites with AgBr ≤ 10 mol%, above which the composites underwent a phase separation into ß/γ-AgIss and face-centred cubic AgBr solid solutions (AgBrss). The onset temperature of the exothermic peaks attributed to the transition from α-AgI-structured solid-solution phase to ß/γ-AgIss or AgBrss decreased with increasing the AgBr-doping ratio. The room-temperature ionic conductivity of the AgI-AgBr/MPA composites exhibited a volcano-type dependence on the AgBr-doping ratio with the highest value (1.6 × 10-3 S cm-1) when the AgBr content was 10 mol%. This value is more than twice as high as that of the highest conducting AgI/MPA found in our previous study.

10.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125638

RESUMO

The oxidation of tetraselenatetracene (TSeT) by tetracyanoquinodimethane in the presence of dysprosium(III) tris(hexafluoroacetylacetonate), DyIII(hfac)3, produces black crystals of {TSeT1.5}●+[DyIII(hfac)4]- (1) salt, which combines conducting and magnetic sublattices. It contains one-dimensional stacks composed of partially oxidized TSeT molecules (formal averaged charge is +2/3). Dimers and monomers can be outlined within these stacks with charge and spin density redistribution. The spin triplet state of the dimers is populated above 128 K with an estimated singlet-triplet energy gap of 542 K, whereas spins localized on the monomers show paramagnetic behavior. A semiconducting behavior is observed for 1 with the activation energy of 91 meV (measured by the four-probe technique for an oriented single crystal). The DyIII ions coordinate four hfac- anions in [DyIII(hfac)4]-, providing D2d symmetry. Slow magnetic relaxation is observed for DyIII under an applied static magnetic field of 1000 Oe, and 1 is a single-ion magnet (SIM) with spin reversal barrier Ueff = 40.2 K and magnetic hysteresis at 2 K. Contributions from DyIII and TSeT●+ paramagnetic species are seen in EPR. The DyIII ion rarely manifests EPR signals, but such signal is observed in 1. It appears due to narrowing below 30 K and has g4 = 6.1871 and g5 = 2.1778 at 5.4 K.


Assuntos
Disprósio , Semicondutores , Disprósio/química , Ânions/química , Dimerização , Modelos Moleculares , Fenômenos Magnéticos , Magnetismo
11.
Angew Chem Int Ed Engl ; 63(14): e202400162, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339815

RESUMO

Ladder systems situated in the dimensional crossover region have attracted much attention because their electronic states and physical properties depend strongly on the electronic correlations among the constituent legs. Generally, two-/three-legged transition metal-oxide ladder compounds are studied as representative ladder systems, but two-/three-dimensional (2D/3D) extensions based on such ladder systems with a few numbers of legs are difficult because of the extreme synthesis conditions. Here, for the first time, we report the successful creation of a 3D extended two-legged ladder compound, [Pt(en)(dpye)I]2(NO3)4 ⋅ 2H2O (en=ethylenediamine; dpye=1,2-Di(4-pyridyl)ethane), which is obtained by simple oxidative polymerization of a small Pt macrocyclic complex using elemental I2. The unique 3D extended lattice consists of 1D mixed-valence halogen-bridged metal chains (⋅⋅⋅Pt-I-Pt-I⋅⋅⋅) and helically arranged macrocyclic units as the constituent legs and rungs, as confirmed by single-crystal X-ray diffraction. Diffuse X-ray scattering analyses and optical measurements revealed that the out-of-phase mixed-valence Pt2+/Pt4+ arrangement arises from the weak interchain correlation among adjacent legs. In addition, this compound shows an increase in proton conductivity by a factor of up to 1000, depending on humidity.

12.
Angew Chem Int Ed Engl ; : e202414823, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291298

RESUMO

The metal-organic frameworks (MOFs) attract interest as potential catalysts whose catalytic properties are driven by defects. Several methods have been proposed for the defects-inducing synthesis of MOFs. However, the active species formed on the defective sites remain elusive and uncharacterized, as the spectroscopic fingerprints of these species are hidden by the regular structure signals. In this work, we have performed the synthesis of ZIF-8 MOF with defect-inducing procedures using fully deuterated 2-methylimidazolate ligands to enhance the defective sites' visibility. By combining 1H and 31P MAS NMR spectroscopy and X-ray absorption spectroscopy, we have found evidence for the presence of different structural hydroxyl Zn-OH groups in the ZIF-8 materials. It is demonstrated that the ZIF-8 defect sites are represented by Zn-OH hydroxyl groups with the signals at 0.3 and -0.7 ppm in 1H MAS NMR spectrum. These species are of basic nature and may be responsible for the catalytic activity of the ZIF-8 material.

13.
Angew Chem Int Ed Engl ; : e202414786, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39295286

RESUMO

The selenides of platinum-group metals (PGMs) are emerging as promising catalysts for diverse electrochemical reactions. To date, most studies have focused on single metal or bimetallic systems, whereas the preparation of a high-entropy (HE) selenide consisting of five or more PGM elements holds the promise to further enhance catalytic performance by introducing abundant active sites with various local coordination environments and electronic structures. Herein, we report for the first time the synthesis of PGM-based HE-Selenide (HE-Se) nanoparticles with a unique amorphous structure. The atomic metal-Se coordination and the presence of short-range order were thoroughly revealed. It is further shown that the amorphous HE-Se can be facilely transformed into a single-phase crystalline HE-Se with a cubic structure by thermal annealing. Catalytically, the amorphous HE-Se showed better acidic hydrogen evolution activity over monometallic PGM-based selenides and the crystalline counterpart, demonstrating the advantages of high-entropy configuration and amorphous structure. Our findings may pave the way toward the synthesis and property exploration of amorphous PGM-based selenides with tunable compositions.

14.
J Am Chem Soc ; 145(17): 9454-9458, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37093264

RESUMO

The use of nanotubes in the solution state is crucial not only for the exploration of physical and chemical behaviors at the molecular level but also for application such as thin-film fabrication. Surface modification is generally used to solubilize carbon nanotubes (CNTs) and various synthetic nanotubes; however, this method may affect the surface properties of the original nanotubes, and the detailed crystal structure obtained after modification is unclear. Here, we report the synthesis of a crystalline and soluble metal-organic nanotube consisting of a cationic tubular framework and an anion with a long alkyl chain. The nanotubular structures are formed not only in the solid state but also in the solution state, as confirmed by an X-ray structural analysis, optical measurements, and electron microscopy studies. This nanotube system is realized in different states without any surface modification, which is quite different from typical CNTs and synthetic nanotubes. In addition, self-assembled crystalline bundles are directly observed using transmission electron microscopy (TEM) for the first time in a metal-organic nanotube system. The bundle structures are also confirmed by atomic force microscopy (AFM) observations of thin nanotube films. We envisage a systematic design of such soluble metal-organic nanotubes that will enable direct observation of mass transport behavior in channels of bundles or a single nanotube, as well as a wide range of thin-film applications.

15.
J Am Chem Soc ; 145(31): 17136-17142, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37471524

RESUMO

Multielement alloy nanoparticles have attracted much attention due to their attractive catalytic properties derived from the multiple interactions of adjacent multielement atoms. However, mixing multiple elements in ultrasmall nanoparticles from a wide range of elements on the periodic table is still challenging because the elements have different properties and miscibility. Herein, we developed a benchtop 4-way flow reactor for chemical synthesis of ultra-multielement alloy (UMEA) nanoparticles composed of d-block and p-block elements. BiCoCuFeGaInIrNiPdPtRhRuSbSnTi 15-element alloy nanoparticles composed of group IV to XV elements were synthesized by sequential injection of metal precursors using the reactor. This methodology realized the formation of UMEA nanoparticles at low temperature (66 °C), resulting in a 1.9 nm ultrasmall average particle size. The UMEA nanoparticles have high durability and activity for electrochemical alcohol oxidation reactions and high tolerance to CO poisoning. These results suggest that the multiple interactions of UMEA efficiently promote the multistep alcohol oxidation reaction.

16.
J Am Chem Soc ; 145(44): 24005-24011, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37883673

RESUMO

Technetium (Tc), atomic number 43, is an element that humans cannot freely use even in the 21st century because Tc is radioactive and has no stable isotope. In this report, we present molybdenum-ruthenium-carbon solid-solution alloy (MoxRu1-xCy) nanoparticles (NPs) that are expected to have an electronic structure similar to that of technetium carbide (TcCy). MoxRu1-xCy NPs were synthesized by annealing under a helium/hydrogen atmosphere following thermal decomposition of metal precursors. The obtained NPs had a solid-solution structure in the whole composition range. MoxRu1-xCy with a cubic structure (down to 30 atom % Mo in the metal ratio) showed a superconducting state, and the transition temperature (Tc) increased with increasing Mo composition. The continuous change in Tc across that of TcCy indicates the continuous control of the electronic structure by solid-solution alloying, leading to pseudo-TcCy. Density functional theory calculations indicated that the synthesized Mo0.53Ru0.47C0.41 has a similar electronic structure to TcC0.41.

17.
Arch Biochem Biophys ; 742: 109615, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37105512

RESUMO

Human serum amyloid A (SAA) is a precursor protein involved in AA amyloidosis. The N-terminal region of the SAA molecule is crucial for amyloid fibril formation, and therefore modifications in this region are considered to influence the pathogenesis of AA amyloidosis. In the present study, using the N-terminal peptide corresponding to the putative first helix region of the SAA molecule, we investigated the influences of N-terminal modifications on amyloid fibril formation. Spectroscopic analyses revealed that carbamoylation of the N-terminal amino group delayed the onset of amyloid fibril formation. From transmission electron microscopic observations, the N-terminal carbamoylated aggregate showed remarkably different morphologies from the unmodified control. In contrast, acetylation of the N-terminal amino group or truncation of N-terminal amino acid(s) considerably diminished amyloidogenic properties. Furthermore, we also tested the cell toxicity of each peptide aggregate on cultured cells by two cytotoxic assays. Irrespective of carbamoylation or acetylation, MTT assay revealed that SAA peptides reduced the reductive activity of MTT on cells, whereas no apparent increase in LDH release was observed during an LDH assay. In contrast, N-terminal truncation did not affect either MTT reduction or LDH release. These results suggest that N-terminal modification of SAA molecules can act as a switch to regulate susceptibility to AA amyloidosis.


Assuntos
Amiloidose , Proteína Amiloide A Sérica , Humanos , Proteína Amiloide A Sérica/metabolismo , Amiloide/química , Amiloidose/etiologia , Microscopia Eletrônica de Transmissão
18.
Inorg Chem ; 62(3): 1135-1140, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36632676

RESUMO

Proton-coupled electron transfer (PCET) is a ubiquitous and fundamental process in biochemistry and electrochemistry performed by transition-metal complexes. Most synthetic efforts have been devoted to selecting the components, that is, metal ions and ligands, to control the proton-electron coupling. Here, we show the first example of controlling the proton-electron coupling using the cis-trans metal-ligand isomerization in a π-planar platinum complex, Pt(itsq)2 (itsq1-: o-iminothiosemiquinonate). Both the isomers, which were obtained separately, were characterized by single-crystal X-ray diffraction, and the cis-to-trans isomerization was achieved by immersing in organic solvents. Theoretical calculations predicted that the proton-electron coupling evaluated from the energetic stabilization of the lowest unoccupied molecular orbital by protonation varies greatly depending on the geometrical configuration compared to the metal substitution.

19.
Inorg Chem ; 62(43): 17736-17744, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37850881

RESUMO

The reaction between an excess of Fe(CO)5 with {Cryptand(K+)}(C60•-) produced the salt {Cryptand(K+)}2{[Fe(CO)2]2-µ2-η2:η2-η2:η2-(C60)2}2-·4C6H4Cl2 (1) containing negatively charged iron-bridged fullerene dimers. In these dimers, the C60 cages are linked via two Fe(CO)2 fragments, forming short Fe-C(C60) bonds with a length of 2.070(3) Å and via two intercage C-C bonds with a length of 1.566(3) Å. Interfullerene center-to-center distance is short, being 9.02 Å. Thus, the coordination-induced dimerization of fullerenes is observed in 1. The dimer is negatively charged, with additional negative electron density mainly localized on iron atoms and, to a lesser extent, on the C60 cages, as revealed by optical and electron paramagnetic resonance spectra. These dimers have a diamagnetic singlet ground state with a small singlet-triplet gap of 25 K; consequently, they transfer to a paramagnetic state with two S = 1/2 spins per dimer above 50 K. Previously, different dimers with isomeric structures were obtained starting from {Cryptand(K+)}(C60•-) and Fe3(CO)12. However, these dimers exhibit diamagnetic properties, owing to the formation of a Fe-Fe bond. In contrast, in dimer 1, the Fe atoms are positioned too far apart to form such a bond, preserving the spin on Fe. We assume that both dimers are formed through the same [Fe(CO)3](C60•-) intermediate, but the subsequent interaction of this intermediate with Fe3(CO)12 or its dimerization yields different dimers. Therefore, the starting carbonyls can control the structures and properties of the resulting dimers.

20.
Inorg Chem ; 62(29): 11390-11401, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37436101

RESUMO

The stepwise reduction of copper(II) 1,4,8,11,15,18,22,25-octafluoro-2,3,9,10,16,17,23,24-octakisperfluoro(isopropyl) phthalocyanine (CuIIF64Pc) in o-dichlorobenzene (C6H4Cl2) by potassium graphite in the presence of cryptand(K+), abbreviated L+, results in the formation of (L+)[CuII(F64Pc•3-)]-·2C6H4Cl2 (1), (L+)2[CuII(F64Pc4-)]2-·C6H4Cl2 (2), and (L+)2[CuII(F64Pc4-)]2- (3) complexes. Single-crystal X-ray structures revealed their composition and a monotonic increase with increased phthalocyanine (Pc) negative charges of the magnitude of alternative shortening and elongation of the prior equivalent Nmeso-C bonds. The complexes are separated by bulky i-C3F7 substituents, large cryptand counterions, and solvent molecules. Weak, new bands are generated in the visible and near-infrared (NIR) domains upon reductions. The one-electron reduced complex, [CuII(F64Pc•3-)]-, is a diradical, exhibiting broad electron paramagnetic resonance (EPR) signals, with intermediate parameters between those typical to CuII and F64Pc•3-. The two-electron reduced complexes, [CuII(F64Pc4-)]2-, contain a diamagnetic F64Pc4- macrocycle and a single spin, S = 1/2, on CuII. The bulky perfluoroisopropyl groups are suppressing intermolecular π-π interactions between Pcs in the [CuII(F64Pcn-)](n-2)- (n = 3, 4) anions, 1-3, similar to the case of the nonreduced complex. However, π-π interactions between 1 and o-dichlorobenzene are observed. The d9 and Pc electrons in 1 are antiferromagnetically coupled, J = -0.56 cm-1, as revealed by superconducting quantum interference device (SQUID) magnetometry, but the coupling is at least 1 order of magnitude smaller compared with the coupling observed for CuII(F8Pc•3-) and CuII(F16Pc•3-), a testimony to the F accretion effect of rendering the Pc macrocycle progressively more electron-deficient. The data for CuII(F64Pc) provide structural, spectroscopic, and magnetochemical insights, which establish a trend of the effects of fluorine and charge variations of fluorinated Pcs within the macrocycle series CuII(FxPc), x = 8, 16, 64. Diamagnetic Pcs might be useful for photodynamic therapy (PDT) and related biomedical applications, while the solvent-processable biradicalic nature of the monoanion salts may constitute the basis for designing robust, air-stable electronic, and magnetically condensed materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA