Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mutagenesis ; 34(1): 49-54, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30690463

RESUMO

The International Council for Harmonisation of Technical Requirement for Pharmaceuticals for Human Use (ICH) M7 guideline on 'Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk' provides the application of two types of quantitative structure-activity relationship (QSAR) systems (rule- and statistics-based) as an alternative to the Ames test for evaluating the mutagenicity of impurities in pharmaceuticals. M7 guideline also states that the expert reviews can be applied when the outcomes of the two QSAR analyses show any conflicting or inconclusive prediction. However, the guideline does not provide any information of how to conduct expert reviews. Therefore, a conservative approach was chosen in this study, which is based on the intention to capture any mutagenic chemical substances. The 36 chemical substances, which are the model chemical substances in which positive mutagenicity was not observed according to the two types of QSAR analyses (i.e. the results are either conflicting or both negative), were selected from the list of chemical substances with strong mutagenicity known as the reported chemicals under the Industrial Safety and Health Act in Japan. The QSAR Toolbox was used in this study to rationally determine the positive mutagenicity of the 36 model chemical substances by applying a read-across method, a technique to evaluate the endpoint of the model chemical substances using the endpoint information of chemicals that are structurally similar to the model chemical substances. Resulting from the expert review by the read-across method, the 23 model chemical substances (63.8%) were rationally concluded as positive. In addition, 9 out of 11 model chemical substances that were assessed as negative for mutagenicity by both of the QSAR systems had positive analogues, supporting their mutagenicity. These results suggested that the read-across is a useful method, when conducting a conservative approach intended to capture any mutagenic chemical substances.


Assuntos
Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade/tendências , Mutagênicos/toxicidade , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , DNA/efeitos dos fármacos , Bases de Dados Factuais , Humanos , Japão
2.
Mutagenesis ; 34(1): 3-16, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30357358

RESUMO

The International Conference on Harmonization (ICH) M7 guideline allows the use of in silico approaches for predicting Ames mutagenicity for the initial assessment of impurities in pharmaceuticals. This is the first international guideline that addresses the use of quantitative structure-activity relationship (QSAR) models in lieu of actual toxicological studies for human health assessment. Therefore, QSAR models for Ames mutagenicity now require higher predictive power for identifying mutagenic chemicals. To increase the predictive power of QSAR models, larger experimental datasets from reliable sources are required. The Division of Genetics and Mutagenesis, National Institute of Health Sciences (DGM/NIHS) of Japan recently established a unique proprietary Ames mutagenicity database containing 12140 new chemicals that have not been previously used for developing QSAR models. The DGM/NIHS provided this Ames database to QSAR vendors to validate and improve their QSAR tools. The Ames/QSAR International Challenge Project was initiated in 2014 with 12 QSAR vendors testing 17 QSAR tools against these compounds in three phases. We now present the final results. All tools were considerably improved by participation in this project. Most tools achieved >50% sensitivity (positive prediction among all Ames positives) and predictive power (accuracy) was as high as 80%, almost equivalent to the inter-laboratory reproducibility of Ames tests. To further increase the predictive power of QSAR tools, accumulation of additional Ames test data is required as well as re-evaluation of some previous Ames test results. Indeed, some Ames-positive or Ames-negative chemicals may have previously been incorrectly classified because of methodological weakness, resulting in false-positive or false-negative predictions by QSAR tools. These incorrect data hamper prediction and are a source of noise in the development of QSAR models. It is thus essential to establish a large benchmark database consisting only of well-validated Ames test results to build more accurate QSAR models.


Assuntos
Mutagênese/efeitos dos fármacos , Mutagênicos/toxicidade , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Bases de Dados Factuais , Humanos , Japão , Testes de Mutagenicidade
3.
Genes Environ ; 43(1): 16, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931133

RESUMO

BACKGROUND: Food flavors are relatively low molecular weight chemicals with unique odor-related functional groups that may also be associated with mutagenicity. These chemicals are often difficult to test for mutagenicity by the Ames test because of their low production and peculiar odor. Therefore, application of the quantitative structure-activity relationship (QSAR) approach is being considered. We used the StarDrop™ Auto-Modeller™ to develop a new QSAR model. RESULTS: In the first step, we developed a new robust Ames database of 406 food flavor chemicals consisting of existing Ames flavor chemical data and newly acquired Ames test data. Ames results for some existing flavor chemicals have been revised by expert reviews. We also collected 428 Ames test datasets for industrial chemicals from other databases that are structurally similar to flavor chemicals. A total of 834 chemicals' Ames test datasets were used to develop the new QSAR models. We repeated the development and verification of prototypes by selecting appropriate modeling methods and descriptors and developed a local QSAR model. A new QSAR model "StarDrop NIHS 834_67" showed excellent performance (sensitivity: 79.5%, specificity: 96.4%, accuracy: 94.6%) for predicting Ames mutagenicity of 406 food flavors and was better than other commercial QSAR tools. CONCLUSIONS: A local QSAR model, StarDrop NIHS 834_67, was customized to predict the Ames mutagenicity of food flavor chemicals and other low molecular weight chemicals. The model can be used to assess the mutagenicity of food flavors without actual testing.

4.
Genes Environ ; 42(1): 32, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33292765

RESUMO

BACKGROUND: (Quantitative) Structure-Activity Relationship ((Q)SAR) is a promising approach to predict the potential adverse effects of chemicals based on their structure without performing toxicological studies. We evaluate the mutagenicity of food flavor chemicals by (Q) SAR tools, identify potentially mutagenic chemicals, and verify their mutagenicity by actual Ames test. RESULTS: The Ames mutagenicity of 3942 food flavor chemicals was predicted using two (Q)SAR) tools, DEREK Nexus and CASE Ultra. Three thousand five hundred seventy-five chemicals (91%) were judged to be negative in both (Q) SAR tools, and 75 chemicals (2%) were predicted to be positive in both (Q) SAR tools. When the Ames test was conducted on ten of these positive chemicals, nine showed positive results. CONCLUSION: The (Q) SAR method can be used for screening the mutagenicity of food flavors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA