Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Immunol ; 20(11): 1469-1480, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591568

RESUMO

Tissue-resident memory T cells (TRM cells) are crucial mediators of adaptive immunity in nonlymphoid tissues. However, the functional heterogeneity and pathogenic roles of CD4+ TRM cells that reside within chronic inflammatory lesions remain unknown. We found that CD69hiCD103lo CD4+ TRM cells produced effector cytokines and promoted the inflammation and fibrotic responses induced by chronic exposure to Aspergillus fumigatus. Simultaneously, immunosuppressive CD69hiCD103hiFoxp3+ CD4+ regulatory T cells were induced and constrained the ability of pathogenic CD103lo TRM cells to cause fibrosis. Thus, lung tissue-resident CD4+ T cells play crucial roles in the pathology of chronic lung inflammation, and CD103 expression defines pathogenic effector and immunosuppressive tissue-resident cell subpopulations in the inflamed lung.


Assuntos
Comunicação Celular/imunologia , Tolerância Imunológica , Memória Imunológica , Fibrose Pulmonar/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD/metabolismo , Antígenos de Fungos/imunologia , Aspergillus fumigatus/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Cadeias alfa de Integrinas/metabolismo , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos Transgênicos , Fibrose Pulmonar/patologia , Linfócitos T Reguladores/metabolismo
2.
Immunity ; 55(12): 2352-2368.e7, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36272417

RESUMO

Allergic conjunctivitis is a chronic inflammatory disease that is characterized by severe itch in the conjunctiva, but how neuro-immune interactions shape the pathogenesis of severe itch remains unclear. We identified a subset of memory-type pathogenic Th2 cells that preferentially expressed Il1rl1-encoding ST2 and Calca-encoding calcitonin-gene-related peptide (CGRP) in the inflammatory conjunctiva using a single-cell analysis. The IL-33-ST2 axis in memory Th2 cells controlled the axonal elongation of the peripheral sensory C-fiber and the induction of severe itch. Pharmacological blockade and genetic deletion of CGRP signaling in vivo attenuated scratching behavior. The analysis of giant papillae from patients with severe allergic conjunctivitis revealed ectopic lymphoid structure formation with the accumulation of IL-33-producing epithelial cells and CGRP-producing pathogenic CD4+ T cells accompanied by peripheral nerve elongation. Thus, the IL-33-ST2-CGRP axis directs severe itch with neuro-reconstruction in the inflammatory conjunctiva and is a potential therapeutic target for severe itch in allergic conjunctivitis.


Assuntos
Conjuntivite Alérgica , Neuropeptídeos , Humanos , Interleucina-33/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Peptídeo Relacionado com Gene de Calcitonina , Conjuntivite Alérgica/patologia , Células Th2 , Calcitonina , Prurido/patologia , Túnica Conjuntiva/patologia , Neurônios
3.
Immunity ; 49(1): 134-150.e6, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29958800

RESUMO

Memory T cells provide long-lasting protective immunity, and distinct subpopulations of memory T cells drive chronic inflammatory diseases such as asthma. Asthma is a chronic allergic inflammatory disease with airway remodeling including fibrotic changes. The immunological mechanisms that induce airway fibrotic changes remain unknown. We found that interleukin-33 (IL-33) enhanced amphiregulin production by the IL-33 receptor, ST2hi memory T helper 2 (Th2) cells. Amphiregulin-epidermal growth factor receptor (EGFR)-mediated signaling directly reprogramed eosinophils to an inflammatory state with enhanced production of osteopontin, a key profibrotic immunomodulatory protein. IL-5-producing memory Th2 cells and amphiregulin-producing memory Th2 cells appeared to cooperate to establish lung fibrosis. The analysis of polyps from patients with eosinophilic chronic rhinosinusitis revealed fibrosis with accumulation of amphiregulin-producing CRTH2hiCD161hiCD45RO+CD4+ Th2 cells and osteopontin-producing eosinophils. Thus, the IL-33-amphiregulin-osteopontin axis directs fibrotic responses in eosinophilic airway inflammation and is a potential target for the treatment of fibrosis induced by chronic allergic disorders.


Assuntos
Anfirregulina/imunologia , Eosinófilos/imunologia , Osteopontina/metabolismo , Fibrose Pulmonar/imunologia , Transdução de Sinais/imunologia , Células Th2/imunologia , Anfirregulina/biossíntese , Anfirregulina/metabolismo , Anfirregulina/farmacologia , Animais , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Feminino , Memória Imunológica/imunologia , Imunomodulação , Interleucina-33/metabolismo , Camundongos , Rinite/imunologia , Rinite/patologia , Sinusite/imunologia , Sinusite/patologia , Transcrição Gênica/efeitos dos fármacos
4.
Proc Natl Acad Sci U S A ; 120(2): e2218345120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595680

RESUMO

CD4+ memory T cells are central to long-lasting protective immunity and are involved in shaping the pathophysiology of chronic inflammation. While metabolic reprogramming is critical for the generation of memory T cells, the mechanisms controlling the redox metabolism in memory T cell formation remain unclear. We found that reactive oxygen species (ROS) metabolism changed dramatically in T helper-2 (Th2) cells during the contraction phase in the process of memory T cell formation. Thioredoxin-interacting protein (Txnip), a regulator of oxidoreductase, regulated apoptosis by scavenging ROS via the nuclear factor erythroid 2-related factor 2 (Nrf2)-biliverdin reductase B (Blvrb) pathway. Txnip regulated the pathology of chronic airway inflammation in the lung by controlling the generation of allergen-specific pathogenic memory Th2 cells in vivo. Thus, the Txnip-Nrf2-Blvrb axis directs ROS metabolic reprogramming in Th2 cells and is a potential therapeutic target for intractable chronic inflammatory diseases.


Assuntos
Células T de Memória , Fator 2 Relacionado a NF-E2 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Inflamação , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(49): e2302903120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015852

RESUMO

Uncontrolled type 2 immunity by type 2 helper T (Th2) cells causes intractable allergic diseases; however, whether the interaction of CD4+ T cells shapes the pathophysiology of allergic diseases remains unclear. We identified a subset of Th2 cells that produced the serine proteases granzyme A and B early in differentiation. Granzymes cleave protease-activated receptor (Par)-1 and induce phosphorylation of p38 mitogen-activated protein kinase (MAPK), resulting in the enhanced production of IL-5 and IL-13 in both mouse and human Th2 cells. Ubiquitin-specific protease 7 (USP7) regulates IL-4-induced phosphorylation of STAT3, resulting in granzyme production during Th2 cell differentiation. Genetic deletion of Usp7 or Gzma and pharmacological blockade of granzyme B ameliorated allergic airway inflammation. Furthermore, PAR-1+ and granzyme+ Th2 cells were colocalized in nasal polyps from patients with eosinophilic chronic rhinosinusitis. Thus, the USP7-STAT3-granzymes-Par-1 pathway is a potential therapeutic target for intractable allergic diseases.


Assuntos
Hipersensibilidade , Células Th2 , Humanos , Animais , Camundongos , Granzimas/genética , Granzimas/metabolismo , Interleucina-5/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Inflamação/metabolismo , Diferenciação Celular , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
6.
Immunol Rev ; 305(1): 137-151, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935162

RESUMO

Epigenetic regulation of gene transcription in the immune system is important for proper control of protective and pathogenic inflammation. Aberrant epigenetic modifications are often associated with dysregulation of the immune cells, including lymphocytes and macrophages, leading to pathogenic inflammation and autoimmune diseases. Two classical epigenetic markers-histone modifications and DNA cytosine methylation, the latter is the 5 position of the cytosine base in the context of CpG dinucleotides-play multiple roles in the immune system. CxxC domain-containing proteins, which basically bind to the non-methylated CpG (i.e., epigenetic "readers"), often function as "writers" of the epigenetic markers via their catalytic domain within the proteins or by interacting with other epigenetic modifiers. We herein report the most recent advances in our understanding of the functions of CxxC domain-containing proteins in the immune system and inflammation, mainly focusing on T cells and macrophages.


Assuntos
Metilação de DNA , Epigênese Genética , Ilhas de CpG , DNA , Humanos , Inflamação/genética
7.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35210367

RESUMO

Mounting evidence suggests that nematode infection can protect against disorders of immune dysregulation. Administration of live parasites or their excretory/secretory (ES) products has shown therapeutic effects across a wide range of animal models for immune disorders, including asthma. Human clinical trials of live parasite ingestion for the treatment of immune disorders have produced promising results, yet concerns persist regarding the ingestion of pathogenic organisms and the immunogenicity of protein components. Despite extensive efforts to define the active components of ES products, no small molecules with immune regulatory activity have been identified from nematodes. Here we show that an evolutionarily conserved family of nematode pheromones called ascarosides strongly modulates the pulmonary immune response and reduces asthma severity in mice. Screening the inhibitory effects of ascarosides produced by animal-parasitic nematodes on the development of asthma in an ovalbumin (OVA) murine model, we found that administration of nanogram quantities of ascr#7 prevented the development of lung eosinophilia, goblet cell metaplasia, and airway hyperreactivity. Ascr#7 suppressed the production of IL-33 from lung epithelial cells and reduced the number of memory-type pathogenic Th2 cells and ILC2s in the lung, both key drivers of the pathology of asthma. Our findings suggest that the mammalian immune system recognizes ascarosides as an evolutionarily conserved molecular signature of parasitic nematodes. The identification of a nematode-produced small molecule underlying the well-documented immunomodulatory effects of ES products may enable the development of treatment strategies for allergic diseases.


Assuntos
Inflamação/prevenção & controle , Nematoides/química , Traqueia/efeitos dos fármacos , Animais , Asma/fisiopatologia , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Hipersensibilidade/fisiopatologia , Inflamação/induzido quimicamente , Camundongos , Camundongos Endogâmicos BALB C , Nematoides/patogenicidade , Ovalbumina/efeitos adversos , Bibliotecas de Moléculas Pequenas/farmacologia , Traqueia/fisiopatologia
8.
Proc Natl Acad Sci U S A ; 119(33): e2203437119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35895716

RESUMO

The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1-expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)-containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19.


Assuntos
COVID-19 , Pulmão , Cadeias Leves de Miosina , SARS-CoV-2 , Índice de Gravidade de Doença , Tromboinflamação , Vasculite , COVID-19/sangue , COVID-19/complicações , COVID-19/patologia , Humanos , Leucócitos Mononucleares , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Cadeias Leves de Miosina/sangue , RNA-Seq , SARS-CoV-2/isolamento & purificação , Análise de Célula Única , Espectrometria por Raios X , Tromboinflamação/patologia , Tromboinflamação/virologia , Vasculite/patologia , Vasculite/virologia
9.
J Clin Immunol ; 44(4): 104, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647550

RESUMO

PURPOSE: Auto-antibodies (auto-abs) to type I interferons (IFNs) have been identified in patients with life-threatening coronavirus disease 2019 (COVID-19), suggesting that the presence of auto-abs may be a risk factor for disease severity. We therefore investigated the mechanism underlying COVID-19 exacerbation induced by auto-abs to type I IFNs. METHODS: We evaluated plasma from 123 patients with COVID-19 to measure auto-abs to type I IFNs. We performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells from the patients with auto-abs and conducted epitope mapping of the auto-abs. RESULTS: Three of 19 severe and 4 of 42 critical COVID-19 patients had neutralizing auto-abs to type I IFNs. Patients with auto-abs to type I IFNs showed no characteristic clinical features. scRNA-seq from 38 patients with COVID-19 revealed that IFN signaling in conventional dendritic cells and canonical monocytes was attenuated, and SARS-CoV-2-specific BCR repertoires were decreased in patients with auto-abs. Furthermore, auto-abs to IFN-α2 from COVID-19 patients with auto-abs recognized characteristic epitopes of IFN-α2, which binds to the receptor. CONCLUSION: Auto-abs to type I IFN found in COVID-19 patients inhibited IFN signaling in dendritic cells and monocytes by blocking the binding of type I IFN to its receptor. The failure to properly induce production of an antibody to SARS-CoV-2 may be a causative factor of COVID-19 severity.


Assuntos
Autoanticorpos , COVID-19 , Interferon Tipo I , Células Mieloides , Feminino , Humanos , Masculino , Autoanticorpos/imunologia , Autoanticorpos/sangue , COVID-19/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Células Mieloides/imunologia , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Transdução de Sinais/imunologia
10.
J Allergy Clin Immunol ; 150(4): 850-860.e5, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863510

RESUMO

BACKGROUND: Allergic rhinitis is a growing problem worldwide. Currently the only treatment that can modify the disease is antigen-specific immunotherapy, but its mechanism of action is not fully understood. OBJECTIVE: We comprehensively investigated the role and changes of antigen-specific T cells before and after sublingual immunotherapy (SLIT) for Japanese cedar pollinosis. METHODS: We cultured peripheral blood mononuclear cells obtained both before and 1 year after initiating SLIT and used a combination of single-cell RNA sequencing and repertoire sequencing. To investigate biomarkers, we used cells from patients participating a phase 2/3 trial of SLIT tablets for Japanese cedar pollinosis and cells from outpatients with good and poor response. RESULTS: Antigen-stimulated culturing after SLIT led to clonal expansion of TH2 and regulatory T cells, and most of these CD4+ T cells retained their CDR3 regions before and after treatment, indicating antigen-specific clonal responses and differentiation resulting from SLIT. However, SLIT reduced the number of clonal functional TH2 cells but increased the trans-type TH2 cell population that expresses musculin (MSC), TGF-ß, and IL-2. Trajectory analysis suggested that SLIT induced clonal differentiation of the trans-type TH2 cells differentiated into regulatory T cells. Using real-time PCR, we found that the MSC levels increased in the active SLIT group and those with good response after 1 year of treatment. CONCLUSION: The combination of single-cell RNA sequencing and repertoire analysis helped reveal part of the underlying mechanism: SLIT promotes the expression of MSC on pathogenic TH2 cells and suppresses their function. MSC may be a potential biomarker of SLIT for allergic rhinitis.


Assuntos
Cryptomeria , Rinite Alérgica Sazonal , Rinite Alérgica , Imunoterapia Sublingual , Alérgenos , Biomarcadores , Humanos , Fatores Imunológicos , Interleucina-2 , Leucócitos Mononucleares , Rinite Alérgica/metabolismo , Rinite Alérgica/terapia , Rinite Alérgica Sazonal/terapia , Imunoterapia Sublingual/métodos , Fator de Crescimento Transformador beta
11.
Int Immunol ; 33(12): 699-704, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34427648

RESUMO

CD4+ T cells not only direct immune responses against infectious micro-organisms but are also involved in the pathogenesis of inflammatory diseases. In the last two to three decades, various researchers have identified and characterized several functional CD4+ T-cell subsets, including T-helper 1 (Th1), Th2, Th9 and Th17 cells and regulatory T (Treg) cells. In this mini-review, we introduce the concept of pathogenic Th cells that induce inflammatory diseases with a model of disease induction by a population of pathogenic Th cells: the 'pathogenic Th population disease-induction model'. We will focus on Th2 cells that induce allergic airway inflammation-pathogenic Th2 cells (Tpath2 cells)-and discuss the nature of Tpath2 cells that shape the pathology of chronic inflammatory diseases. Various Tpath2-cell subsets have been identified and their unique features are summarized in mouse and human systems. Second, we will discuss how Th cells migrate and are maintained in chronic inflammatory lesions. We propose a model known as the 'CD69-Myl9 system'. CD69 is a cell surface molecule expressed on activated T cells and interaction with its ligand myosin light chain 9 (Myl9) is required for the induction of inflammatory diseases. Myl9 molecules in the small vessels of inflamed lungs may play a crucial role in the migration of activated T cells into inflammatory lesions. Emerging evidence may provide new insight into the pathogenesis of chronic inflammatory diseases and contribute to the development of new therapeutic strategies for intractable inflammatory disorders.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos T CD4-Positivos/imunologia , Inflamação/imunologia , Lectinas Tipo C/imunologia , Cadeias Leves de Miosina/imunologia , Linfócitos T Reguladores/imunologia , Animais , Humanos
12.
Allergol Int ; 70(1): 3-8, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33032901

RESUMO

Eosinophils are multifunctional leukocytes, being involved in the host defense against helminth infection, tissue homeostasis and repair of injured tissue. However, eosinophils also play critical roles in shaping the pathogenesis of allergic diseases, including fibrotic responses in allergic diseases. Eosinophils consist of various granules that are a source of cytokines, chemokines, enzymes, extracellular matrix and growth factors. Recent studies have revealed that eosinophil extracellular trap cell death (EETosis) exacerbates eosinophilic inflammation by releasing the products, including Charcot-Leyden crystals (CLCs). In type 2 inflammatory diseases, memory-type pathogenic helper T (Tpath) cells are involved in shaping the pathogenesis of eosinophilic inflammation by recruiting and activating eosinophils in vivo. We herein review the molecular mechanisms underlying the development of eosinophils and the various functions of granules, including CLCs, during eosinophilic inflammation. We also discuss the double-edged roles of eosinophils in tissue repair and type 2 immune inflammation.


Assuntos
Eosinófilos/citologia , Eosinófilos/fisiologia , Animais , Biomarcadores , Comunicação Celular/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo
13.
Cancer Sci ; 111(7): 2223-2233, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32324315

RESUMO

Invariant natural killer T (iNKT) cells are innate-like CD1d-restricted T cells that express the invariant T cell receptor (TCR) composed of Vα24 and Vß11 in humans. iNKT cells specifically recognize glycolipid antigens such as α-galactosylceramide (αGalCer) presented by CD1d. iNKT cells show direct cytotoxicity toward CD1d-positive tumor cells, especially when CD1d presents glycolipid antigens. However, iNKT cell recognition of CD1d-negative tumor cells is unknown, and direct cytotoxicity of iNKT cells toward CD1d-negative tumor cells remains controversial. Here, we demonstrate that activated iNKT cells recognize leukemia cells in a CD1d-independent manner, however still in a TCR-mediated way. iNKT cells degranulated and released Th1 cytokines toward CD1d-negative leukemia cells (K562, HL-60, REH) as well as αGalCer-loaded CD1d-positive Jurkat cells. The CD1d-independent cytotoxicity was enhanced by natural killer cell-activating receptors such as NKG2D, 2B4, DNAM-1, LFA-1 and CD2, but iNKT cells did not depend on these receptors for the recognition of CD1d-negative leukemia cells. In contrast, TCR was essential for CD1d-independent recognition and cytotoxicity. iNKT cells degranulated toward patient-derived leukemia cells independently of CD1d expression. iNKT cells targeted myeloid malignancies more than acute lymphoblastic leukemia. These findings reveal a novel anti-tumor mechanism of iNKT cells in targeting CD1d-negative tumor cells and indicate the potential of iNKT cells for clinical application to treat leukemia independently of CD1d.


Assuntos
Antígenos CD1d/metabolismo , Leucemia/imunologia , Leucemia/metabolismo , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Animais , Antígenos CD1d/genética , Biomarcadores , Degranulação Celular , Linhagem Celular Tumoral , Receptores Coestimuladores e Inibidores de Linfócitos T/metabolismo , Citocinas/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Edição de Genes , Xenoenxertos , Humanos , Imunofenotipagem , Leucemia/genética , Leucemia/patologia , Ativação Linfocitária/genética , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores Desencadeadores da Citotoxicidade Natural/metabolismo
14.
J Allergy Clin Immunol ; 144(2): 549-560.e10, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30851295

RESUMO

BACKGROUND: Natural killer T (NKT) cells express a T-cell receptor that recognizes endogenous and environmental glycolipid antigens. Several subsets of NKT cells have been identified, including IFN-γ-producing NKT1 cells, IL-4-producing NKT2 cells, and IL-17-producing NKT17 cells. However, little is known about the factors that regulate their differentiation and respective functions within the immune system. OBJECTIVE: We sought to determine whether the polycomb repressive complex 2 protein enhancer of zeste homolog 2 (Ezh2) restrains pathogenicity of NKT cells in the context of asthma-like lung disease. METHODS: Numbers of invariant natural killer T (iNKT) 1, iNKT2, and iNKT17 cells and tissue distribution, cytokine production, lymphoid tissue localization, and transcriptional profiles of iNKT cells from wild-type and Ezh2 knockout (KO) iNKT mice were determined. The contribution of NKT cells to development of spontaneous and house dust mite-induced airways pathology, including airways hyperreactivity (AHR) to methacholine, was also assessed in wild-type, Ezh2 KO, and Ezh2 KO mice lacking NKT cells. RESULTS: Ezh2 restrains development of pathogenic NKT cells, which induce spontaneous asthma-like disease in mice. Deletion of Ezh2 increased production of IL-4 and IL-13 and induced spontaneous AHR, lung inflammation, mucus production, and IgE. Increased IL-4 and IL-13 levels, AHR, lung inflammation, and IgE levels were all dependent on iNKT cells. In house dust mite-exposed animals Ezh2 KO resulted in enhanced AHR that was also dependent on iNKT cells. CONCLUSION: Ezh2 is a central regulator of iNKT pathogenicity and suppresses the ability of iNKT cells to induce asthma-like pathology.


Assuntos
Asma/imunologia , Proteína Potenciadora do Homólogo 2 de Zeste/imunologia , Pulmão/imunologia , Células T Matadoras Naturais/imunologia , Animais , Asma/genética , Asma/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Células T Matadoras Naturais/patologia , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/imunologia
15.
J Immunol ; 199(3): 1153-1162, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28659357

RESUMO

Posttranslational modifications of histones are well-established epigenetic modifications that play an important role in gene expression and regulation. These modifications are partly mediated by the Trithorax group (TrxG) complex, which regulates the induction or maintenance of gene transcription. We investigated the role of Menin, a component of the TrxG complex, in the acquisition and maintenance of Th2 cell identity using T cell-specific Menin-deficient mice. Our gene expression analysis revealed that Menin was involved in the maintenance of the high expression of the previously identified Th2-specific genes rather than the induction of these genes. This result suggests that Menin plays a role in the maintenance of Th2 cell identity. Menin directly bound to the Gata3 gene locus, and this Menin-Gata3 axis appeared to form a core unit of the Th2-specific gene regulatory network. Consistent with the phenotype of Menin-deficient Th2 cells observed in vitro, Menin deficiency resulted in the attenuation of effector Th2 cell-induced airway inflammation. In addition, in memory Th2 (mTh2) cells, Menin was found to play an important role in the maintenance of the expression of Th2-specific genes, including Gata3, Il4, and Il13 Consequently, Menin-deficient mTh2 cells showed an impaired ability to recruit eosinophils to the lung, resulting in the attenuation of mTh2 cell-induced airway inflammation. This study confirmed the critical role of Menin in Th2 cell-mediated immune responses.


Assuntos
Epigênese Genética , Memória Imunológica , Proteínas Proto-Oncogênicas/metabolismo , Células Th2/imunologia , Animais , Diferenciação Celular , Eosinófilos/imunologia , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Imunidade Celular , Inflamação , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Pulmão/imunologia , Camundongos , Ligação Proteica , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Células Th2/metabolismo , Transcrição Gênica
18.
Proc Natl Acad Sci U S A ; 111(35): 12829-34, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136117

RESUMO

Epigenetic modifications, such as posttranslational modifications of histones, play an important role in gene expression and regulation. These modifications are in part mediated by the Trithorax group (TrxG) complex and the Polycomb group (PcG) complex, which activate and repress transcription, respectively. We herein investigate the role of Menin, a component of the TrxG complex in T helper (Th) cell differentiation and show a critical role for Menin in differentiation and maintenance of Th17 cells. Menin(-/-) T cells do not efficiently differentiate into Th17 cells, leaving Th1 and Th2 cell differentiation intact in in vitro cultures. Menin deficiency resulted in the attenuation of Th17-induced airway inflammation. In differentiating Th17 cells, Menin directly bound to the Il17a gene locus and was required for the deposition of permissive histone modifications and recruitment of the RNA polymerase II transcriptional complex. Interestingly, although Menin bound to the Rorc locus, Menin was dispensable for the induction of Rorc expression and permissive histone modifications in differentiating Th17 cells. In contrast, Menin was required to maintain expression of Rorc in differentiated Th17 cells, indicating that Menin is essential to stabilize expression of the Rorc gene. Thus, Menin orchestrates Th17 cell differentiation and function by regulating both the induction and maintenance of target gene expression.


Assuntos
Asma/imunologia , Epigênese Genética/imunologia , Interleucina-17/imunologia , Proteínas Proto-Oncogênicas/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Cromatina/imunologia , Cromatina/metabolismo , Epigênese Genética/genética , Regulação da Expressão Gênica/imunologia , Histona-Lisina N-Metiltransferase/imunologia , Histona-Lisina N-Metiltransferase/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/imunologia , Proteína de Leucina Linfoide-Mieloide/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ovalbumina/imunologia , Ovalbumina/farmacologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Polimerase II/imunologia , RNA Polimerase II/metabolismo , Células Th17/metabolismo
20.
Virus Genes ; 51(1): 148-51, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26089292

RESUMO

A novel cyclovirus was identified in the intestinal contents of Taiwan squirrels (Callosciurus erythraeus thaiwanensis) collected in Kanagawa prefecture, Japan, by metagenomic analysis, and was named Taiwan squirrel cyclovirus-1 (TsCyV-1). Phylogenetic analysis showed that TsCyV-1 formed a branch separate from other representative cyclovirus strains. TsCyV-1 is considered to be a new species in the genus Cyclovirus because the criteria for demarcation of cyclovirus species is proposed as nucleotide identities <80 %.


Assuntos
Circoviridae/classificação , Circoviridae/isolamento & purificação , DNA Viral/química , DNA Viral/genética , Conteúdo Gastrointestinal/virologia , Genoma Viral , Sciuridae/virologia , Animais , Circoviridae/genética , Análise por Conglomerados , Japão , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA