Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 289(20): 13974-85, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24644285

RESUMO

Despite recent advances in molecular classification, surgery, radiotherapy, and targeted therapies, the clinical outcome of patients with malignant brain tumors remains extremely poor. In this study, we have identified the tetraspan protein epithelial membrane protein-2 (EMP2) as a potential target for glioblastoma (GBM) killing. EMP2 had low or undetectable expression in normal brain but was highly expressed in GBM as 95% of patients showed some expression of the protein. In GBM cells, EMP2 enhanced tumor growth in vivo in part by up-regulating αvß3 integrin surface expression, activating focal adhesion kinase and Src kinases, and promoting cell migration and invasion. Consistent with these findings, EMP2 expression significantly correlated with activated Src kinase in patient samples and promoted tumor cell invasion using intracranial mouse models. As a proof of principle to determine whether EMP2 could serve as a target for therapy, cells were treated using specific anti-EMP2 antibody reagents. These reagents were effective in killing GBM cells in vitro and in reducing tumor load in subcutaneous mouse models. These results support the role of EMP2 in the pathogenesis of GBM and suggest that anti-EMP2 treatment may be a novel therapeutic treatment.


Assuntos
Glioblastoma/tratamento farmacológico , Glicoproteínas de Membrana/metabolismo , Terapia de Alvo Molecular , Quinases da Família src/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ativação Enzimática , Feminino , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/enzimologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Glicoproteínas de Membrana/imunologia , Camundongos , Fenótipo
2.
Cancers (Basel) ; 16(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38672563

RESUMO

Breast cancer (BC) remains among the most commonly diagnosed cancers in women worldwide. Triple-negative BC (TNBC) is a subset of BC characterized by aggressive behavior, a high risk of distant recurrence, and poor overall survival rates. Chemotherapy is the backbone for treatment in patients with TNBC, but outcomes remain poor compared to other BC subtypes, in part due to the lack of recognized functional targets. In this study, the expression of the tetraspan protein epithelial membrane protein 2 (EMP2) was explored as a predictor of TNBC response to standard chemotherapy. We demonstrate that EMP2 functions as a prognostic biomarker for patients treated with taxane-based chemotherapy, with high expression at both transcriptomic and protein levels following treatment correlating with poor overall survival. Moreover, we show that targeting EMP2 in combination with docetaxel reduces tumor load in syngeneic and xenograft models of TNBC. These results provide support for the prognostic and therapeutic potential of this tetraspan protein, suggesting that anti-EMP2 therapy may be beneficial for the treatment of select chemotherapy-resistant TNBC tumors.

3.
Mol Cancer Ther ; 19(8): 1682-1695, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32451329

RESUMO

Little is known about the role of epithelial membrane protein-2 (EMP2) in breast cancer development or progression. In this study, we tested the hypothesis that EMP2 may regulate the formation or self-renewal of breast cancer stem cells (BCSC) in the tumor microenvironment. In silico analysis of gene expression data demonstrated a correlation of EMP2 expression with known metastasis-related genes and markers of cancer stem cells (CSC) including aldehyde dehydrogenase (ALDH). In breast cancer cell lines, EMP2 overexpression increased and EMP2 knockdown decreased the proportion of stem-like cells as assessed by the expression of the CSC markers CD44+/CD24-, ALDH activity, or by tumor sphere formation. In vivo, upregulation of EMP2 promoted tumor growth, whereas knockdown reduced the ALDHhigh CSC population as well as retarded tumor growth. Mechanistically, EMP2 functionally regulated the response to hypoxia through the upregulation of HIF-1α, a transcription factor previously shown to regulate the self-renewal of ALDHhigh CSCs. Furthermore, in syngeneic mouse models and primary human tumor xenografts, mAbs directed against EMP2 effectively targeted CSCs, reducing the ALDH+ population and blocking their tumor-initiating capacity when implanted into secondary untreated mice. Collectively, our results show that EMP2 increases the proportion of tumor-initiating cells, providing a rationale for the continued development of EMP2-targeting agents.


Assuntos
Anticorpos Monoclonais/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Glicoproteínas de Membrana/metabolismo , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral/imunologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Invest Ophthalmol Vis Sci ; 55(3): 1637-46, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24398102

RESUMO

PURPOSE: Corneal neovascularization (NV) is a sight-threatening condition often associated with infection, inflammation, prolonged contact lens use, corneal burns, and acute corneal graft rejection. Macrophages recruited to the cornea release nitric oxide (NO) and superoxide anion (O2(-)), which react together to form the highly toxic molecule peroxynitrite (ONOO(-)). The role of ONOO(-) in upregulating multiple angiogenic factors in cultured human corneal limbal epithelial (HCLE) cells was investigated. METHODS: Human corneal limbal epithelial cells were incubated with 500 µM of ONOO(-) donor for various times. VEGF-A, BFGF, and hypoxic-inducible factor-alpha (HIF-1α) were investigated via Western blot and RT-PCR was performed for VEGF. Functional assays using human umbilical vein endothelial cells (HUVEC) used conditioned media from ONOO(-)-exposed HCLE cells. Secreted VEGF from conditioned media was detected and analyzed using ELISA. RESULTS: Increased angiogenic factors were observed as early as 4 hours after HCLE exposure to ONOO(-). HIF-1 expression was seen at 4, 6, and 8 hours post-ONOO(-) exposure (P < 0.05). BFGF expression was elevated at 4 hours and peaked at 8 hours after treatment with ONOO(-) (P < 0.005). Increased VEGF-A gene expression was observed at 6 and 8 hours post-ONOO(-) treatment. Functional assays using conditioned media showed increased HUVEC migration and tube formation. CONCLUSIONS: Exposure to elevated extracellular concentrations of ONOO(-) results in upregulation of angiogenic factors in HCLE cells. It is possible that, in the setting of inflammation or infection, that exposure to ONOO(-) could be one contributor to the complex initiators of corneal NV. Validation in vivo would identify an additional potential control point for corneal NV.


Assuntos
Neovascularização da Córnea/genética , Fator 2 de Crescimento de Fibroblastos/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Limbo da Córnea/metabolismo , Ácido Peroxinitroso/farmacologia , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Western Blotting , Células Cultivadas , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , Ensaio de Imunoadsorção Enzimática , Fator 2 de Crescimento de Fibroblastos/biossíntese , Citometria de Fluxo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Limbo da Córnea/efeitos dos fármacos , Limbo da Córnea/patologia , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator A de Crescimento do Endotélio Vascular/biossíntese
5.
Mol Cancer Ther ; 13(4): 902-15, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24448822

RESUMO

Despite significant advances in biology and medicine, the incidence and mortality due to breast cancer worldwide is still unacceptably high. Thus, there is an urgent need to discover new molecular targets. In this article, we show evidence for a novel target in human breast cancer, the tetraspan protein epithelial membrane protein-2 (EMP2). Using tissue tumor arrays, protein expression of EMP2 was measured and found to be minimal in normal mammary tissue, but it was upregulated in 63% of invasive breast cancer tumors and in 73% of triple-negative tumors tested. To test the hypothesis that EMP2 may be a suitable target for therapy, we constructed a fully human immunoglobulin G1 (IgG1) antibody specific for a conserved domain of human and murine EMP2. Treatment of breast cancer cells with the anti-EMP2 IgG1 significantly inhibited EMP2-mediated signaling, blocked FAK/Src signaling, inhibited invasion, and promoted apoptosis in vitro. In both human xenograft and syngeneic metastatic tumor monotherapy models, anti-EMP2 IgG1 retarded tumor growth without detectable systemic toxicity. This antitumor effect was, in part, attributable to a potent antibody-dependent cell-mediated cytotoxicity response as well as direct cytotoxicity induced by the monoclonal antibody. Together, these results identify EMP2 as a novel therapeutic target for invasive breast cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carcinoma Ductal de Mama/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Análise Serial de Tecidos , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA