Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(9): 5620-5628, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33851533

RESUMO

For decades, we have known that chemicals affect human and wildlife behavior. Moreover, due to recent technological and computational advances, scientists are now increasingly aware that a wide variety of contaminants and other environmental stressors adversely affect organismal behavior and subsequent ecological outcomes in terrestrial and aquatic ecosystems. There is also a groundswell of concern that regulatory ecotoxicology does not adequately consider behavior, primarily due to a lack of standardized toxicity methods. This has, in turn, led to the exclusion of many behavioral ecotoxicology studies from chemical risk assessments. To improve understanding of the challenges and opportunities for behavioral ecotoxicology within regulatory toxicology/risk assessment, a unique workshop with international representatives from the fields of behavioral ecology, ecotoxicology, regulatory (eco)toxicology, neurotoxicology, test standardization, and risk assessment resulted in the formation of consensus perspectives and recommendations, which promise to serve as a roadmap to advance interfaces among the basic and translational sciences, and regulatory practices.


Assuntos
Conservação dos Recursos Naturais , Ecotoxicologia , Animais , Animais Selvagens , Ecossistema , Humanos , Medição de Risco
2.
Chem Res Toxicol ; 33(7): 1770-1779, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32227843

RESUMO

High-throughput in vitro reporter gene assays are increasingly applied to assess the potency of chemicals to alter specific cellular signaling pathways. Genetically modified reporter gene cell lines provide stable readouts of the activation of cellular receptors or transcription factors of interest, but such reporter gene assays have been criticized for not capturing cellular metabolism. We characterized the metabolic activity of the widely applied AREc32 (human breast cancer MCF-7), ARE-bla (human liver cancer HepG2), and GR-bla (human embryonic kidney HEK293) reporter gene cells in the absence and in the presence of benzo[a]pyrene (BaP), an AhR ligand known to upregulate cytochrome P450 in vitro and in vivo. We combined fluorescence microscopy with chemical analysis, real-time PCR, and ethoxyresorufin-O-deethylase activity measurements to track temporal changes in BaP and its metabolites in the cells and surrounding medium over time in relation to the expression and activity of metabolic enzymes. Decreasing BaP concentrations and formation of metabolites agreed with the high basal CYP1 activity of ARE-bla and the strong CYP1A1 mRNA induction in AREc32, whereas BaP concentrations were constant in GR-bla, in which neither metabolites nor CYP1 induction was detected. The study emphasizes that differences in sensitivity between reporter gene assays may be caused not only by different reporter constructs but also by a varying biotransformation rate of the evaluated parent chemical. The basal metabolic capacity of reporter gene cells in the absence of chemicals is not a clear indication because we demonstrated that the metabolic activity can be upregulated by AhR ligands during the assay. The combination of methods presented here is suitable to characterize the metabolic activity of cells in vitro and can improve the interpretation of in vitro reporter gene effect data and extrapolation to in vivo human exposure.


Assuntos
Benzopirenos/farmacologia , Bioensaio , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Modelos Biológicos , Genes Reporter , Células HEK293 , Células Hep G2 , Humanos , Células MCF-7 , RNA Mensageiro/metabolismo
3.
Environ Sci Technol ; 53(1): 482-493, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30516976

RESUMO

Chemicals considered as neuroactive (such as certain pesticides, pharmaceuticals, and industrial chemicals) are among the largest groups of bioactive substances recently detected in European rivers. However, the determination of nervous-system-specific effects has been limited using in vitro tests or conventional end points including lethality. Thus, neurobehavioral tests using in vivo models (e.g., zebrafish embryo) have been proposed as complementary approaches. To investigate the specificity and sensitivity of a light-dark transition locomotor response (LMR) test in 4 to 5 days post fertilization zebrafish with respect to different modes of action (MoAs), we analyzed a set of 18 environmentally relevant compounds with various anticipated MoAs. We found that exposure-induced behavioral alterations were reproducible and dependent on concentration and time. Comparative and quantitative analyses of the obtained locomotor patterns revealed that behavioral effects were not restricted to compounds primarily known to target the nervous system. A clear distinction of MoAs based on locomotor patterns was not possible for most compounds. Furthermore, chemicals with an anticipated same MoA did not necessarily provoke similar behavioral phenotypes. Finally, we determined an increased sensitivity (≥10-fold) compared to observed mortality in the LMR assay for five of eight neuroactive chemicals as opposed to non-neuroactive compounds.


Assuntos
Embrião não Mamífero , Peixe-Zebra , Animais
4.
Environ Sci Technol ; 53(13): 7877-7886, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31177773

RESUMO

The aim of the current study was to understand and develop models to predict the pH-dependent toxicity of ionizable pharmaceuticals in embryos of the zebrafish Danio rerio. We found a higher uptake and toxicity with increasing neutral fraction of acids (diclofenac, genistein, naproxen, torasemide, and warfarin) and bases (metoprolol and propranolol). Simple mass balance models accounting for the partitioning to lipids and proteins in the zebrafish embryo were found to be suitable to predict the bioconcentration after 96 h of exposure if pH values did not differ much from the internal pH of 7.55. For other pH values, a kinetic ion-trap model for the zebrafish embryo explained the pH dependence of biouptake and toxicity. The total internal lethal concentrations killing 50% of the zebrafish embryos (ILC50) were calculated from the measured BCF and LC50. The resulting ILC50 were independent of external pH. Critical membrane concentrations were deduced by an internal mass balance model, and apart from diclofenac, whose specific toxicity in fish had already been established, all pharmaceuticals were confirmed to act as baseline toxicants in zebrafish.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Diclofenaco , Embrião não Mamífero , Concentração de Íons de Hidrogênio
5.
Environ Sci Technol ; 49(11): 7002-11, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25939044

RESUMO

The fish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, but concerns have been raised for its predictivity given that a few compounds have been shown to exhibit a weak acute toxicity in the fish embryo. In order to better define the applicability domain and improve the predictive capacity of the fish embryo test, we performed a systematic analysis of existing fish embryo and acute fish toxicity data. A correlation analysis of a total of 153 compounds identified 28 compounds with a weaker or no toxicity in the fish embryo test. Eleven of these compounds exhibited a neurotoxic mode of action. We selected a subset of eight compounds with weaker or no embryo toxicity (cyanazine, picloram, aldicarb, azinphos-methyl, dieldrin, diquat dibromide, endosulfan, and esfenvalerate) to study toxicokinetics and a neurotoxic mode of action as potential reasons for the deviating fish embryo toxicity. Published fish embryo LC50 values were confirmed by experimental analysis of zebrafish embryo LC50 according to OECD guideline 236. Except for diquat dibromide, internal concentration analysis did not indicate a potential relation of the low sensitivity of fish embryos to a limited uptake of the compounds. Analysis of locomotor activity of diquat dibromide and the neurotoxic compounds in 98 hpf embryos (exposed for 96 h) indicated a specific effect on behavior (embryonic movement) for the neurotoxic compounds. The EC50s of behavior for neurotoxic compounds were close to the acute fish toxicity LC50. Our data provided the first evidence that the applicability domain of the fish embryo test (LC50s determination) may exclude neurotoxic compounds. However, neurotoxic compounds could be identified by changes in embryonic locomotion. Although a quantitative prediction of acute fish toxicity LC50 using behavioral assays in fish embryos may not yet be possible, the identification of neurotoxicity could trigger the conduction of a conventional fish acute toxicity test or application of assessment factors while considering the very good fish embryo-acute fish toxicity correlation for other compounds.


Assuntos
Comportamento Animal/efeitos dos fármacos , Neurotoxinas/toxicidade , Testes de Toxicidade Aguda , Peixe-Zebra/embriologia , Animais , Bioensaio , Exposição Ambiental/análise , Dose Letal Mediana , Atividade Motora/efeitos dos fármacos , Análise de Regressão , Fatores de Tempo
6.
Regul Toxicol Pharmacol ; 69(3): 572-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24929227

RESUMO

Distribution and marketing of chemicals require appropriate labelling of health, physical and environmental hazards according to the United Nations global harmonisation system (GHS). Labelling for (human) acute toxicity categories is based on experimental findings usually obtained by oral, dermal or inhalative exposure of rodents. There is a strong societal demand for replacing animal experiments conducted for safety assessment of chemicals. Fish embryos are considered as alternative to animal testing and are proposed as predictive model both for environmental and human health effects. Therefore, we tested whether LC50s of the fish embryo acute toxicity test would allow effectively predicting of acute mammalian toxicity categories. A database of published fish embryo LC50 containing 641 compounds was established. For these compounds corresponding rat oral LD50 were identified resulting in 364 compounds for which both fish embryo LC50 and rat LD50 was available. Only a weak correlation of fish embryo LC50 and rat oral LD50 was obtained. Fish embryos were also not able to effectively predict GHS oral acute toxicity categories. We concluded that due to fundamental exposure protocol differences (single oral dose versus water-borne exposure) a reverse dosimetry approach is needed to explore the predictive capacity of fish embryos.


Assuntos
Segurança Química/métodos , Substâncias Perigosas/efeitos adversos , Testes de Toxicidade Aguda/métodos , Experimentação Animal , Alternativas aos Testes com Animais/métodos , Animais , Peixes , Humanos , Dose Letal Mediana , Modelos Teóricos , Ratos , Segurança , Nações Unidas
7.
BMC Biol ; 11: 69, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23773777

RESUMO

BACKGROUND: In mammals, ABCB1 constitutes a cellular "first line of defense" against a wide array of chemicals and drugs conferring cellular multidrug or multixenobiotic resistance (MDR/MXR). We tested the hypothesis that an ABCB1 ortholog serves as protection for the sensitive developmental processes in zebrafish embryos against adverse compounds dissolved in the water. RESULTS: Indication for ABCB1-type efflux counteracting the accumulation of chemicals in zebrafish embryos comes from experiments with fluorescent and toxic transporter substrates and inhibitors. With inhibitors present, levels of fluorescent dyes in embryo tissue and sensitivity of embryos to toxic substrates were generally elevated. We verified two predicted sequences from zebrafish, previously annotated as abcb1, by cloning; our synteny analyses, however, identified them as abcb4 and abcb5, respectively. The abcb1 gene is absent in the zebrafish genome and we explored whether instead Abcb4 and/or Abcb5 show toxicant defense properties. Quantitative real-time polymerase chain reaction (qPCR) analyses showed the presence of transcripts of both genes throughout the first 48 hours of zebrafish development. Similar to transporter inhibitors, morpholino knock-down of Abcb4 increased accumulation of fluorescent substrates in embryo tissue and sensitivity of embryos toward toxic compounds. In contrast, morpholino knock-down of Abcb5 did not exert this effect. ATPase assays with recombinant protein obtained with the baculovirus expression system confirmed that dye and toxic compounds act as substrates of zebrafish Abcb4 and inhibitors block its function. The compounds tested comprised model substrates of human ABCB1, namely the fluorescent dyes rhodamine B and calcein-am and the toxic compounds vinblastine, vincristine and doxorubicin; cyclosporin A, PSC833, MK571 and verapamil were applied as inhibitors. Additionally, tests were performed with ecotoxicologically relevant compounds: phenanthrene (a polycyclic aromatic hydrocarbon) and galaxolide and tonalide (two polycyclic musks). CONCLUSIONS: We show that zebrafish Abcb4 is a cellular toxicant transporter and provides protection of embryos against toxic chemicals dissolved in the water. Zebrafish Abcb4 thus is functionally similar to mammalian ABCB1, but differs from mammalian ABCB4, which is not involved in cellular resistance to chemicals but specifically transports phospholipids in the liver. Our data have important implications: Abcb4 could affect bioavailability - and thus toxicologic and pharmacologic potency - of chemicals to zebrafish embryos and inhibition of Abcb4 therefore causes chemosensitization, that is, enhanced sensitivity of embryos to toxicants. These aspects should be considered in (eco)toxicologic and pharmacologic chemical screens with the zebrafish embryo, a major vertebrate model.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Xenobióticos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/metabolismo , Animais , Clonagem Molecular , Embrião não Mamífero , Corantes Fluorescentes , Técnicas de Silenciamento de Genes , Sintenia , Testes de Toxicidade , Proteínas de Peixe-Zebra/genética
8.
Sci Data ; 11(1): 60, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200014

RESUMO

Chemicals in the aquatic environment can be harmful to organisms and ecosystems. Knowledge on effect concentrations as well as on mechanisms and modes of interaction with biological molecules and signaling pathways is necessary to perform chemical risk assessment and identify toxic compounds. To this end, we developed criteria and a pipeline for harvesting and summarizing effect concentrations from the US ECOTOX database for the three aquatic species groups algae, crustaceans, and fish and researched the modes of action of more than 3,300 environmentally relevant chemicals in literature and databases. We provide a curated dataset ready to be used for risk assessment based on monitoring data and the first comprehensive collection and categorization of modes of action of environmental chemicals. Authorities, regulators, and scientists can use this data for the grouping of chemicals, the establishment of meaningful assessment groups, and the development of in vitro and in silico approaches for chemical testing and assessment.

9.
Front Toxicol ; 6: 1359507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742231

RESUMO

In the European regulatory context, rodent in vivo studies are the predominant source of neurotoxicity information. Although they form a cornerstone of neurotoxicological assessments, they are costly and the topic of ethical debate. While the public expects chemicals and products to be safe for the developing and mature nervous systems, considerable numbers of chemicals in commerce have not, or only to a limited extent, been assessed for their potential to cause neurotoxicity. As such, there is a societal push toward the replacement of animal models with in vitro or alternative methods. New approach methods (NAMs) can contribute to the regulatory knowledge base, increase chemical safety, and modernize chemical hazard and risk assessment. Provided they reach an acceptable level of regulatory relevance and reliability, NAMs may be considered as replacements for specific in vivo studies. The European Partnership for the Assessment of Risks from Chemicals (PARC) addresses challenges to the development and implementation of NAMs in chemical risk assessment. In collaboration with regulatory agencies, Project 5.2.1e (Neurotoxicity) aims to develop and evaluate NAMs for developmental neurotoxicity (DNT) and adult neurotoxicity (ANT) and to understand the applicability domain of specific NAMs for the detection of endocrine disruption and epigenetic perturbation. To speed up assay time and reduce costs, we identify early indicators of later-onset effects. Ultimately, we will assemble second-generation developmental neurotoxicity and first-generation adult neurotoxicity test batteries, both of which aim to provide regulatory hazard and risk assessors and industry stakeholders with robust, speedy, lower-cost, and informative next-generation hazard and risk assessment tools.

10.
Regul Toxicol Pharmacol ; 67(3): 506-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24161465

RESUMO

Tests with vertebrates are an integral part of environmental hazard identification and risk assessment of chemicals, plant protection products, pharmaceuticals, biocides, feed additives and effluents. These tests raise ethical and economic concerns and are considered as inappropriate for assessing all of the substances and effluents that require regulatory testing. Hence, there is a strong demand for replacement, reduction and refinement strategies and methods. However, until now alternative approaches have only rarely been used in regulatory settings. This review provides an overview on current regulations of chemicals and the requirements for animal tests in environmental hazard and risk assessment. It aims to highlight the potential areas for alternative approaches in environmental hazard identification and risk assessment. Perspectives and limitations of alternative approaches to animal tests using vertebrates in environmental toxicology, i.e. mainly fish and amphibians, are discussed. Free access to existing (proprietary) animal test data, availability of validated alternative methods and a practical implementation of conceptual approaches such as the Adverse Outcome Pathways and Integrated Testing Strategies were identified as major requirements towards the successful development and implementation of alternative approaches. Although this article focusses on European regulations, its considerations and conclusions are of global relevance.


Assuntos
Alternativas aos Testes com Animais , Poluentes Ambientais/toxicidade , Substâncias Perigosas/toxicidade , Alternativas aos Testes com Animais/legislação & jurisprudência , Alternativas aos Testes com Animais/métodos , Alternativas aos Testes com Animais/tendências , Animais , Poluentes Ambientais/química , União Europeia , Regulamentação Governamental , Guias como Assunto , Substâncias Perigosas/química , Projetos de Pesquisa , Medição de Risco
11.
Sci Rep ; 13(1): 1891, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732581

RESUMO

Plastic pollution, especially by nanoplastics (NPs), has become an emerging topic due to the widespread existence and accumulation in the environment. The research on bioaccumulation and toxicity mechanism of NPs from polyethylene terephthalate (PET), which is widely used for packaging material, have been poorly investigated. Herein, we report the first use of high-resolution magic-angle spinning (HRMAS) NMR based metabolomics in combination with toxicity assay and behavioural end points to get systems-level understanding of toxicity mechanism of PET NPs in intact zebrafish embryos. PET NPs exhibited significant alterations on hatching and survival rate. Accumulation of PET NPs in larvae were observed in liver, intestine, and kidney, which coincide with localization of reactive oxygen species in these areas. HRMAS NMR data reveal that PET NPs cause: (1) significant alteration of metabolites related to targeting of the liver and pathways associated with detoxification and oxidative stress; (2) impairment of mitochondrial membrane integrity as reflected by elevated levels of polar head groups of phospholipids; (3) cellular bioenergetics as evidenced by changes in numerous metabolites associated with interrelated pathways of energy metabolism. Taken together, this work provides for the first time a comprehensive system level understanding of toxicity mechanism of PET NPs exposure in intact larvae.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Polietilenotereftalatos/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Larva/metabolismo , Embrião não Mamífero/metabolismo , Poluentes Químicos da Água/toxicidade
12.
Environ Toxicol Chem ; 41(3): 559-568, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33201515

RESUMO

Concerns are increasing that pharmaceuticals released into the environment pose a risk to nontarget organism such as fish. The fish plasma model is a read-across approach that uses human therapeutic blood plasma concentrations for estimating likely effects in fish. However, the fish plasma model neglects differences in plasma protein binding between fish and humans. Because binding data for fish plasma are scarce, the binding of 12 active pharmaceutical ingredients (APIs; acidic, basic, and neutral) to rainbow trout (Oncorhynchus mykiss) and human plasma was measured using solid-phase microextraction (SPME). The plasma/water distribution ratios (D plasma/w ) of neutral and basic APIs were similar for trout and human plasma, differing by no more than a factor of 2.7 for a given API. For the acidic APIs, the D plasma/w values of trout plasma were much lower than for human plasma, by up to a factor of 71 for naproxen. The lower affinity of the acidic APIs to trout plasma compared with human plasma suggests that the bioavailability of these APIs is higher in trout. Read-across approaches like the fish plasma model should account for differences in plasma protein binding to avoid over- or underestimation of effects in fish. For the acidic APIs, the effect ratio of the fish plasma model would increase by a factor of 5 to 60 if the unbound plasma concentrations were used to calculate the effect ratio. Environ Toxicol Chem 2022;41:559-568. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Humanos , Oncorhynchus mykiss/metabolismo , Preparações Farmacêuticas/metabolismo , Plasma/metabolismo , Ligação Proteica , Poluentes Químicos da Água/metabolismo
13.
Front Toxicol ; 4: 817999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387429

RESUMO

Toxicological evaluation of chemicals using early-life stage zebrafish (Danio rerio) involves the observation and recording of altered phenotypes. Substantial variability has been observed among researchers in phenotypes reported from similar studies, as well as a lack of consistent data annotation, indicating a need for both terminological and data harmonization. When examined from a data science perspective, many of these apparent differences can be parsed into the same or similar endpoints whose measurements differ only in time, methodology, or nomenclature. Ontological knowledge structures can be leveraged to integrate diverse data sets across terminologies, scales, and modalities. Building on this premise, the National Toxicology Program's Systematic Evaluation of the Application of Zebrafish in Toxicology undertook a collaborative exercise to evaluate how the application of standardized phenotype terminology improved data consistency. To accomplish this, zebrafish researchers were asked to assess images of zebrafish larvae for morphological malformations in two surveys. In the first survey, researchers were asked to annotate observed malformations using their own terminology. In the second survey, researchers were asked to annotate the images from a list of terms and definitions from the Zebrafish Phenotype Ontology. Analysis of the results suggested that the use of ontology terms increased consistency and decreased ambiguity, but a larger study is needed to confirm. We conclude that utilizing a common data standard will not only reduce the heterogeneity of reported terms but increases agreement and repeatability between different laboratories. Thus, we advocate for the development of a zebrafish phenotype atlas to help laboratories create interoperable, computable data.

14.
Dev Biol ; 325(1): 179-88, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18992736

RESUMO

In mammals, the Wilms' tumor suppressor gene, Wt1, encodes a transcription factor critical for development of the urogenital system. In teleost fish, however, two wt1 genes have been identified. In medaka wt1a is expressed in the lateral plate mesoderm during early embryogenesis. Later in development, wt1a is additionally expressed in the somatic cells of the gonadal primordium. We show here for the first time that in teleosts wt1 gene expression is observed during gonad development. Wt1b is expressed later during embryogenesis and is not expressed in the gonadal primordium. Analysis of morpholino knockdown experiments revealed functions of wt1 genes in pronephros development. Unexpectedly, by down-regulating Wt1a protein we observed wt1b expression during embryogenesis in the wildtype wt1a expression domains including somatic cells of the gonadal primordium. Interestingly, neither wt1a nor wt1b morphants showed effects on the gonad development, whereas the double knockdown of wt1a and wt1b displayed strong influences on the number of primordial germ cell (PGC) during gonad development. Our results indicate that medaka wt1 co-orthologs show genetic redundancy in PGC maintenance or survival through responsive backup circuits. This provides first evidence for a conditional co-regulation of these genes within a transcriptional network.


Assuntos
Redes Reguladoras de Genes , Células Germinativas/citologia , Oryzias/genética , Homologia de Sequência do Ácido Nucleico , Proteínas WT1/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Contagem de Células , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Duplicação Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Gônadas/citologia , Gônadas/efeitos dos fármacos , Gônadas/embriologia , Dados de Sequência Molecular , Oligonucleotídeos Antissenso/farmacologia , Oryzias/embriologia , Filogenia , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Análise de Sequência de Proteína , Regulação para Cima/efeitos dos fármacos , Proteínas WT1/química
15.
Environ Toxicol Chem ; 39(2): 269-286, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31569266

RESUMO

Ionizable organic chemicals (IOCs) such as organic acids and bases are an important substance class requiring aquatic hazard evaluation. Although the aquatic toxicity of IOCs is highly dependent on the water pH, many toxicity studies in the literature cannot be interpreted because pH was not reported or not kept constant during the experiment, calling for an adaptation and improvement of testing guidelines. The modulating influence of pH on toxicity is mainly caused by pH-dependent uptake and bioaccumulation of IOCs, which can be described by ion-trapping and toxicokinetic models. The internal effect concentrations of IOCs were found to be independent of the external pH because of organisms' and cells' ability to maintain a stable internal pH milieu. If the external pH is close to the internal pH, existing quantitative structure-activity relationships (QSARs) for neutral organics can be adapted by substituting the octanol-water partition coefficient by the ionization-corrected liposome-water distribution ratio as the hydrophobicity descriptor, demonstrated by modification of the target lipid model. Charged, zwitterionic and neutral species of an IOC can all contribute to observed toxicity, either through concentration-additive mixture effects or by interaction of different species, as is the case for uncoupling of mitochondrial respiration. For specifically acting IOCs, we recommend a 2-step screening procedure with ion-trapping/QSAR models used to predict the baseline toxicity, followed by adjustment using the toxic ratio derived from in vitro systems. Receptor- or plasma-binding models also show promise for elucidating IOC toxicity. The present review is intended to help demystify the ecotoxicity of IOCs and provide recommendations for their hazard and risk assessment. Environ Toxicol Chem 2020;39:269-286. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Ecotoxicologia/métodos , Substâncias Perigosas/toxicidade , Modelos Teóricos , Compostos Orgânicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Substâncias Perigosas/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Compostos Orgânicos/química , Relação Quantitativa Estrutura-Atividade , Água/química , Poluentes Químicos da Água/química
16.
Aquat Toxicol ; 207: 110-119, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30557756

RESUMO

The fish embryo toxicity (FET) test with the zebrafish Danio rerio is widely used to assess the acute toxicity of chemicals thereby serving as animal alternative to the acute fish toxicity test. The minimal toxicity of neutral chemicals in the FET can be predicted with a previously published Quantitative Structure-Activity Relationship (QSAR) based on the liposome-water partition coefficient Klipw. Such a QSAR may serve to plan toxicity testing and to evaluate whether an observed effect is caused by a specific mode of action (MoA). The applicability domain of this QSAR was extended to ionizable organic chemicals (IOC) without any modification of slope and intercept simply by replacing the Klipw with the speciation-corrected liposome-water distribution ratio (Dlipw(pH)) as descriptor for the uptake into the embryo. FET LC50 values of IOCs were extracted from an existing FET database and published literature. IOCs were selected that are present concomitantly as neutral and charged, species, i.e., acids with an acidity constant pKa <10 and bases with pKa>5. IOCs were grouped according to their putative MoA of acute aquatic toxicity. The toxic ratios (TR) in the FET were derived by of the experimental FET-LC50 in comparison with the baseline toxicity QSAR. Baseline toxicants were confirmed to align well with the FET baseline toxicity QSAR (TR < 10). Chemicals identified to act as specific or reactive chemicals with the toxic ratio analysis in the FET test (TR > 10) were generally consistent with MoA classification for acute fish toxicity with a few exceptions that were suspected to have had issues with the stability of the pH during testing. One critical aspect for the effect analysis of ionizable chemicals is the pH, since the difference between pH and pKa determines the speciation and thereby the Dlipw(pH).


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Compostos Orgânicos/química , Compostos Orgânicos/toxicidade , Relação Quantitativa Estrutura-Atividade , Testes de Toxicidade Aguda , Peixe-Zebra/embriologia , Animais , Concentração Inibidora 50 , Íons , Poluentes Químicos da Água/toxicidade
17.
Environ Toxicol Chem ; 38(5): 1012-1022, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30779379

RESUMO

Reported off-target effects of antihistamines in humans draw interest in ecotoxicity testing of first- and second-generation antihistamines, the latter of which have fewer reported side effects in humans. Because antihistamines are ionizable compounds, the pH influences uptake and toxicity and thus is highly relevant when conducting toxicity experiments. Zebrafish embryo toxicity tests were performed with the 3 first-generation antihistamines ketotifen, doxylamine, and dimethindene and the 2 second-generation antihistamines cetirizine and levocabastine at pH 5.5, 7.0, and 8.0. We detected effects on survival, phenotype, swimming activity, and heart rate for 4 antihistamines with the exception of levocabastine, which did not show any lethal or sublethal effects. When compared to lethal concentrations, effect concentrations neither of phenotype malformation nor of swimming activity or heart rate deviated by more than a factor of 10 from lethal concentrations, indicating that all sublethal effects were fairly nonspecific. First-generation antihistamines are weak bases and showed decreasing external effect concentrations with increasing neutral fraction, accompanied by increased uptake in the fish embryo. As a result, internal effect concentrations were independent from external pH. The pH-dependent toxicity originates from speciation-dependent uptake, with neutral species taken up in higher amounts than the corresponding ionic species. Cetirizine, which shifts from a zwitterionic to an anionic state in the measured pH range, did not show any pH-dependent uptake or toxicity. Environ Toxicol Chem 2019;00:1-11. © 2019 SETAC.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos/toxicidade , Peixe-Zebra/embriologia , Animais , Antagonistas dos Receptores Histamínicos/química , Concentração de Íons de Hidrogênio , Íons , Testes de Toxicidade , Poluentes Químicos da Água/farmacologia
18.
Aquat Toxicol ; 201: 129-137, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29906695

RESUMO

ß-Blockers are weak bases with acidity constants related to their secondary amine group. At environmental pH they are protonated with the tendency to shift to their neutral species at more alkaline pH. Here we studied the influence of pH from 5.5 to 8.6 on the toxicity of the four ß-blockers atenolol, metoprolol, labetalol and propranolol in zebrafish embryos, relating toxicity not only in a conventional way to external aqueous concentrations but also to measured internal concentrations. Besides lethality, we evaluated changes in swimming activity and heartbeat, using the Locomotor Response (LMR) method and the Vertebrate Automated Screening Technology (VAST) for high throughput imaging. Effects of metoprolol, labetalol and propranolol were detected on phenotype, heart rate and swimming activity. External effect concentrations decreased with increasing neutral fraction for all three pharmaceuticals, attributed by an enhanced uptake of the neutral species in comparison to the corresponding charged form. The LC50 of metoprolol decreased by a factor of 35 from 1.91 mM with almost complete cationic state at pH 7.0 to 0.054 mM with 8% neutral fraction at pH 8.6. For propranolol the LC50 of 2.42 mM at pH 5.5 was even 100 fold higher than the LC50 at pH 8 with 0.023 mM where 3% were neutral fraction. No effects were detected in the zebrafish embryo exposed to atenolol. The internal concentrations for metoprolol and propranolol were quantified at non-toxic concentrations and at the LC10. Apparent bioconcentration factors (BCF) ranged from 1.96 at pH 7.0 to 32.0 at pH 8.6 for metoprolol and from 1.86 at pH 5.5 to 169 at pH 8.0 for propranolol. The BCFs served to predict the internal effect concentrations from the measured external effect concentrations. Internal effect concentrations of metoprolol and propranolol were in a similar range for all pH-values and for all endpoints. Interestingly, the internal effect concentrations were in the internal concentration range of baseline toxicity, which suggests that the effects of the ß-blockers are rather unspecific, even for sublethal effects on heart rate. In summary, our data confirm that the pH-dependent toxicity related to external concentrations can be explained by toxicokinetic effects and that the internal effect concentrations are pH-independent.


Assuntos
Antagonistas Adrenérgicos beta/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Peixe-Zebra/embriologia , Antagonistas Adrenérgicos beta/química , Animais , Frequência Cardíaca/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Metoprolol/química , Metoprolol/toxicidade , Fenótipo , Propranolol/química , Propranolol/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
19.
Environ Toxicol Chem ; 37(3): 657-670, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29226368

RESUMO

In 2013 the Organisation for Economic Co-operation and Development (OECD) test guideline (236) for fish embryo acute toxicity (FET) was adopted. It determines the acute toxicity of chemicals to embryonic fish. Previous studies show a good correlation of FET with the standard acute fish toxicity (AFT) test; however, the potential of the FET test to predict AFT, which is required by the Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) regulation (EC 1907/2006) and the Classification, Labelling and Packaging (CLP) Regulation (EC 1272/2008), has not yet been fully clarified. In 2015 the European Chemicals Agency (ECHA) requested that a consultant perform a scientific analysis of the applicability of FET to predict AFT. The purpose was to compare the toxicity of substances to fish embryos and to adult fish, and to investigate whether certain factors (e.g., physicochemical properties, modes of action, or chemical structures) could be used to define the applicability boundaries of the FET test. Given the limited data availability, the analysis focused on organic substances. The present critical review summarizes the main findings and discusses regulatory application of the FET test under REACH. Given some limitations (e.g., neurotoxic mode of action) and/or remaining uncertainties (e.g., deviation of some narcotic substances), it has been found that the FET test alone is currently not sufficient to meet the essential information on AFT as required by the REACH regulation. However, the test may be used within weight-of-evidence approaches together with other independent, relevant, and reliable sources of information. The present review also discusses further research needs that may overcome the remaining uncertainties and help to increase acceptance of FET as a replacement for AFT in the future. For example, an increase in the availability of data generated according to OECD test guideline 236 may provide evidence of a higher predictive power of the test. Environ Toxicol Chem 2018;37:657-670. © 2017 SETAC.


Assuntos
Embrião não Mamífero/metabolismo , Peixes/embriologia , Controle Social Formal , Testes de Toxicidade Aguda , Animais , Organização para a Cooperação e Desenvolvimento Econômico , Reprodutibilidade dos Testes
20.
Environ Sci Process Impacts ; 19(7): 901-916, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28574566

RESUMO

In numerous studies on the toxicity of ionisable organic chemicals, it has been shown that the toxicity was typically higher, when larger fractions of the neutral species were present. This observation was explained in some cases by slower uptake of charged species. In other cases it was suggested that the neutral species has intrinsically higher toxicity than the charged species or is alone responsible for the toxicity. However, even permanently charged and organic chemicals with multiple acid and base functional groups and zwitterions are toxic. We set out to reconcile the divergent views and to compare the various existing models for describing the pH-dependence of toxicity with the goal to derive one model that is valid independent of the type and number of charges on the molecule. To achieve this goal we measured the cytotoxicity of 18 acidic, 15 basic and 9 multiprotic/zwitterionic pharmaceuticals at pH 5.5 to pH 9 with the bioluminescence inhibition test using Aliivibrio fischeri (Microtox assay). This assay is useful for an evaluation of various models to describe pH-dependent toxicity because the majority of chemicals act as baseline toxicants in this 30 min cytotoxicity assay. Therefore baseline toxicity with constant membrane concentrations of the sum of all chemical species of approximately 200 mmol kglip-1 served for the validation of the suitability of the various tested models. We confirmed that most tested pharmaceuticals acted as baseline toxicants in this assay at all examined pH values, when toxicity was modeled with a mixture model of concentration addition between the neutral species and all charged species. An ion trapping model, that assumes that the membrane permeability of charged species is kinetically limited, improved model predictions for some pharmaceuticals and pH values. However, neither unhindered uptake nor no uptake of the charged species were ideal models; the reality lies presumably between the two limiting cases with a slower uptake of the charged species than the neutral species. For practical applications a previously developed QSAR model with the ionisation-corrected liposome-water distribution ratio as the sole physicochemical descriptor proved to be generally applicable for all ionisable organic chemicals including those with multiple charges and zwitterions.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Modelos Teóricos , Compostos Orgânicos/toxicidade , Preparações Farmacêuticas/química , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/fisiologia , Bioensaio , Homeostase/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Compostos Orgânicos/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA