Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 61(3): 449-460, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26748828

RESUMO

G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication efficiency of guanine-rich (G-rich) telomeric repeats is decreased significantly in cells lacking HR. Treatment with the G4-stabilizing compound pyridostatin (PDS) increases telomere fragility in BRCA2-deficient cells, suggesting that G4 formation drives telomere instability. Remarkably, PDS reduces proliferation of HR-defective cells by inducing DSB accumulation, checkpoint activation, and deregulated G2/M progression and by enhancing the replication defect intrinsic to HR deficiency. PDS toxicity extends to HR-defective cells that have acquired olaparib resistance through loss of 53BP1 or REV7. Altogether, these results highlight the therapeutic potential of G4-stabilizing drugs to selectively eliminate HR-compromised cells and tumors, including those resistant to PARP inhibition.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Proteína BRCA1/deficiência , Proteína BRCA2/deficiência , Biomarcadores Tumorais/deficiência , Quadruplex G/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Ácidos Picolínicos/farmacologia , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores Tumorais/genética , Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Masculino , Camundongos Nus , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Interferência de RNA , Telômero/efeitos dos fármacos , Telômero/genética , Telômero/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nature ; 537(7619): 249-253, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27580032

RESUMO

Chromosomes are carriers of genetic material and their accurate transfer from a mother cell to its two daughters during cell division is of paramount importance for life. Kinetochores are crucial for this process, as they connect chromosomes with microtubules in the mitotic spindle. Kinetochores are multi-subunit complexes that assemble on specialized chromatin domains, the centromeres, that are able to enrich nucleosomes containing the histone H3 variant centromeric protein A (CENP-A). A group of several additional CENPs, collectively known as constitutive centromere associated network (CCAN), establish the inner kinetochore, whereas a ten-subunit assembly known as the KMN network creates a microtubule-binding site in the outer kinetochore. Interactions between CENP-A and two CCAN subunits, CENP-C and CENP-N, have been previously described, but a comprehensive understanding of CCAN organization and of how it contributes to the selective recognition of CENP-A has been missing. Here we use biochemical reconstitution to unveil fundamental principles of kinetochore organization and function. We show that cooperative interactions of a seven-subunit CCAN subcomplex, the CHIKMLN complex, determine binding selectivity for CENP-A over H3-nucleosomes. The CENP-A:CHIKMLN complex binds directly to the KMN network, resulting in a 21-subunit complex that forms a minimal high-affinity linkage between CENP-A nucleosomes and microtubules in vitro. This structural module is related to fungal point kinetochores, which bind a single microtubule. Its convolution with multiple CENP-A proteins may give rise to the regional kinetochores of higher eukaryotes, which bind multiple microtubules. Biochemical reconstitution paves the way for mechanistic and quantitative analyses of kinetochores.


Assuntos
Cinetocoros/química , Cinetocoros/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Autoantígenos/metabolismo , Centrômero/química , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Microtúbulos/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Fuso Acromático
3.
Semin Cell Dev Biol ; 22(8): 898-905, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21821141

RESUMO

Chromosomal double-strand breaks (DSBs) have the potential to permanently arrest cell cycle progression and endanger cell survival. They must therefore be efficiently repaired to preserve genome integrity and functionality. Homologous recombination (HR) provides an important error-free mechanism for DSB repair in mammalian cells. In addition to RAD51, the central recombinase activity in mammalian cells, a family of proteins known as the RAD51 paralogs and consisting of five proteins (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3), play an essential role in the DNA repair reactions through HR. The RAD51 paralogs act to transduce the DNA damage signal to effector kinases and to promote break repair. However, their precise cellular functions are not fully elucidated. Here we discuss recent advances in our understanding of how these factors mediate checkpoint responses and act in the HR repair process. In addition, we highlight potential functional similarities with the BRCA2 tumour suppressor, through the recently reported links between RAD51 paralog deficiencies and tumorigenesis triggered by genome instability.


Assuntos
Transformação Celular Neoplásica , Dano ao DNA , Reparo do DNA , Rad51 Recombinase/metabolismo , Recombinação Genética/genética , Transdução de Sinais , Animais , Humanos , Rad51 Recombinase/deficiência
4.
Elife ; 62017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059702

RESUMO

Centromeres are unique chromosomal loci that promote the assembly of kinetochores, macromolecular complexes that bind spindle microtubules during mitosis. In most organisms, centromeres lack defined genetic features. Rather, they are specified epigenetically by a centromere-specific histone H3 variant, CENP-A. The Mis18 complex, comprising the Mis18α:Mis18ß subcomplex and M18BP1, is crucial for CENP-A homeostasis. It recruits the CENP-A-specific chaperone HJURP to centromeres and primes it for CENP-A loading. We report here that a specific arrangement of Yippee domains in a human Mis18α:Mis18ß 4:2 hexamer binds two copies of M18BP1 through M18BP1's 140 N-terminal residues. Phosphorylation by Cyclin-dependent kinase 1 (CDK1) at two conserved sites in this region destabilizes binding to Mis18α:Mis18ß, limiting complex formation to the G1 phase of the cell cycle. Using an improved viral 2A peptide co-expression strategy, we demonstrate that CDK1 controls Mis18 complex recruitment to centromeres by regulating oligomerization of M18BP1 through the Mis18α:Mis18ß scaffold.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Quinase CDC2/metabolismo , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Multimerização Proteica , Proteínas de Ciclo Celular , Centrômero/metabolismo , Humanos , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional
5.
Cell Rep ; 11(1): 22-32, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25843710

RESUMO

Although our understanding of centromere maintenance, marked by the histone H3 variant CenH3(CENP-A) in most eukaryotes, has progressed, the mechanism underlying the de novo formation of centromeres remains unclear. We used a synthetic system to dissect how CenH3(CENP-A) contributes to the accumulation of CENP-C and CENP-T, two key components that are necessary for the formation of functional kinetochores. We find that de novo CENP-T accumulation depends on CENP-C and that recruitment of these factors requires two domains in CenH3(CENP-A): the HJURP-binding region (CATD) and the CENP-C-binding region (CAC). Notably, HJURP interacts directly with CENP-C and is critical for de novo accumulation of CENP-C at synthetic centromeres. On the basis of our findings, we propose that HJURP serves a dual chaperone function in coordinating CenH3(CENP-A) and CENP-C recruitment.


Assuntos
Autoantígenos/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Autoantígenos/metabolismo , Centrômero/genética , Proteína Centromérica A , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/genética , Humanos , Cinetocoros/metabolismo , Chaperonas Moleculares/genética , Nucleossomos/genética , Ligação Proteica/genética
6.
J Cell Biol ; 210(1): 11-22, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26124289

RESUMO

Kinetochores are multisubunit complexes that assemble on centromeres to bind spindle microtubules and promote faithful chromosome segregation during cell division. A 16-subunit complex named the constitutive centromere-associated network (CCAN) creates the centromere-kinetochore interface. CENP-C, a CCAN subunit, is crucial for kinetochore assembly because it links centromeres with the microtubule-binding interface of kinetochores. The role of CENP-C in CCAN organization, on the other hand, had been incompletely understood. In this paper, we combined biochemical reconstitution and cellular investigations to unveil how CENP-C promotes kinetochore targeting of other CCAN subunits. The so-called PEST domain in the N-terminal half of CENP-C interacted directly with the four-subunit CCAN subcomplex CENP-HIKM. We identified crucial determinants of this interaction whose mutation prevented kinetochore localization of CENP-HIKM and of CENP-TW, another CCAN subcomplex. When considered together with previous observations, our data point to CENP-C as a blueprint for kinetochore assembly.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Cinetocoros/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Mapas de Interação de Proteínas , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA