Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(13): 7687-7703, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38884202

RESUMO

RAD18 is an E3 ubiquitin ligase that prevents replication fork collapse by promoting DNA translesion synthesis and template switching. Besides this classical role, RAD18 has been implicated in homologous recombination; however, this function is incompletely understood. Here, we show that RAD18 is recruited to DNA lesions by monoubiquitination of histone H2A at K15 and counteracts accumulation of 53BP1. Super-resolution microscopy revealed that RAD18 localizes to the proximity of DNA double strand breaks and limits the distribution of 53BP1 to the peripheral chromatin nanodomains. Whereas auto-ubiquitination of RAD18 mediated by RAD6 inhibits its recruitment to DNA breaks, interaction with SLF1 promotes RAD18 accumulation at DNA breaks in the post-replicative chromatin by recognition of histone H4K20me0. Surprisingly, suppression of 53BP1 function by RAD18 is not involved in homologous recombination and rather leads to reduction of non-homologous end joining. Instead, we provide evidence that RAD18 promotes HR repair by recruiting the SMC5/6 complex to DNA breaks. Finally, we identified several new loss-of-function mutations in RAD18 in cancer patients suggesting that RAD18 could be involved in cancer development.


Assuntos
Cromatina , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Histonas , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Cromatina/metabolismo , Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Histonas/metabolismo , Recombinação Homóloga/genética , Reparo de DNA por Recombinação , Replicação do DNA , Reparo do DNA , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Reparo do DNA por Junção de Extremidades
2.
Int J Cancer ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924040

RESUMO

The MRE11, RAD50, and NBN genes encode the MRN complex sensing DNA breaks and directing their repair. While carriers of biallelic germline pathogenic variants (gPV) develop rare chromosomal instability syndromes, the cancer risk in heterozygotes remains controversial. We performed a systematic review and meta-analysis of 53 studies in patients with different cancer diagnoses to better understand the cancer risk. We found an increased risk (odds ratio, 95% confidence interval) for gPV carriers in NBN for melanoma (7.14; 3.30-15.43), pancreatic cancer (4.03; 2.14-7.58), hematological tumors (3.42; 1.14-10.22), and prostate cancer (2.44, 1.84-3.24), but a low risk for breast cancer (1.29; 1.00-1.66) and an insignificant risk for ovarian cancer (1.53; 0.76-3.09). We found no increased breast cancer risk in carriers of gPV in RAD50 (0.93; 0.74-1.16; except of c.687del carriers) and MRE11 (0.87; 0.66-1.13). The secondary burden analysis compared the frequencies of gPV in MRN genes in patients from 150 studies with those in the gnomAD database. In NBN gPV carriers, this analysis additionally showed a high risk for brain tumors (5.06; 2.39-9.52), a low risk for colorectal (1.64; 1.26-2.10) and hepatobiliary (2.16; 1.02-4.06) cancers, and no risk for endometrial, and gastric cancer. The secondary burden analysis showed also a moderate risk for ovarian cancer (3.00; 1.27-6.08) in MRE11 gPV carriers, and no risk for ovarian and hepatobiliary cancers in RAD50 gPV carriers. These findings provide a robust clinical evidence of cancer risks to guide personalized clinical management in heterozygous carriers of gPV in the MRE11, RAD50, and NBN genes.

3.
Cancer ; 130(17): 2978-2987, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718029

RESUMO

BACKGROUND: The polygenic risk score (PRS) allows the quantification of the polygenic effect of many low-penetrance alleles on the risk of breast cancer (BC). This study aimed to evaluate the performance of two sets comprising 77 or 313 low-penetrance loci (PRS77 and PRS313) in patients with BC in the Czech population. METHODS: In a retrospective case-control study, variants were genotyped from both the PRS77 and PRS313 sets in 1329 patients with BC and 1324 noncancer controls, all women without germline pathogenic variants in BC predisposition genes. Odds ratios (ORs) were calculated according to the categorical PRS in individual deciles. Weighted Cox regression analysis was used to estimate the hazard ratio (HR) per standard deviation (SD) increase in PRS. RESULTS: The distributions of standardized PRSs in patients and controls were significantly different (p < 2.2 × 10-16) with both sets. PRS313 outperformed PRS77 in categorical and continuous PRS analyses. For patients in the highest 2.5% of PRS313, the risk reached an OR of 3.05 (95% CI, 1.66-5.89; p = 1.76 × 10-4). The continuous risk was estimated as an HRper SD of 1.64 (95% CI, 1.49-1.81; p < 2.0 × 10-16), which resulted in an absolute risk of 21.03% at age 80 years for individuals in the 95th percentile of PRS313. Discordant categorization into PRS deciles was observed in 248 individuals (9.3%). CONCLUSIONS: Both PRS77 and PRS313 are able to stratify individuals according to their BC risk in the Czech population. PRS313 shows better discriminatory ability. The results support the potential clinical utility of using PRS313 in individualized BC risk prediction.


Assuntos
Neoplasias da Mama , Predisposição Genética para Doença , Humanos , Feminino , Neoplasias da Mama/genética , Estudos de Casos e Controles , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Herança Multifatorial/genética , Adulto , Medição de Risco/métodos , República Tcheca/epidemiologia , Fatores de Risco , Estratificação de Risco Genético
4.
Folia Biol (Praha) ; 70(1): 62-73, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38830124

RESUMO

Germline DNA testing using the next-gene-ration sequencing (NGS) technology has become the analytical standard for the diagnostics of hereditary diseases, including cancer. Its increasing use places high demands on correct sample identification, independent confirmation of prioritized variants, and their functional and clinical interpretation. To streamline these processes, we introduced parallel DNA and RNA capture-based NGS using identical capture panel CZECANCA, which is routinely used for DNA analysis of hereditary cancer predisposition. Here, we present the analytical workflow for RNA sample processing and its analytical and diagnostic performance. Parallel DNA/RNA analysis allowed credible sample identification by calculating the kinship coefficient. The RNA capture-based approach enriched transcriptional targets for the majority of clinically relevant cancer predisposition genes to a degree that allowed analysis of the effect of identified DNA variants on mRNA processing. By comparing the panel and whole-exome RNA enrichment, we demonstrated that the tissue-specific gene expression pattern is independent of the capture panel. Moreover, technical replicates confirmed high reproducibility of the tested RNA analysis. We concluded that parallel DNA/RNA NGS using the identical gene panel is a robust and cost-effective diagnostic strategy. In our setting, it allows routine analysis of 48 DNA/RNA pairs using NextSeq 500/550 Mid Output Kit v2.5 (150 cycles) in a single run with sufficient coverage to analyse 226 cancer predisposition and candidate ge-nes. This approach can replace laborious Sanger confirmatory sequencing, increase testing turnaround, reduce analysis costs, and improve interpretation of the impact of variants by analysing their effect on mRNA processing.


Assuntos
Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Neoplasias/diagnóstico , RNA/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , DNA/genética
5.
Cancer Biomark ; 40(2): 199-203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38607753

RESUMO

BACKGROUND: Ovarian cancer (OC) is mostly diagnosed in advanced stages with high incidence-to-mortality rate. Nevertheless, some patients achieve long-term disease-free survival. However, the prognostic markers have not been well established. OBJECTIVE: The primary objective of this study was to analyse the association of the suggested prognostic marker rs2185379 in PRDM1 with long-term survival in a large independent cohort of advanced OC patients. METHODS: We genotyped 545 well-characterized advanced OC patients. All patients were tested for OC predisposition. The effect of PRDM1 rs2185379 and other monitored clinicopathological and genetic variables on survival were analysed. RESULTS: The univariate analysis revealed no significant effect of PRDM1 rs2185379 on survival whereas significantly worse prognosis was observed in postmenopausal patients (HR = 2.49; 95%CI 1.90-3.26; p= 4.14 × 10 - 11) with mortality linearly increasing with age (HR = 1.05 per year; 95%CI 1.04-1.07; p= 2 × 10 - 6), in patients diagnosed with non-high-grade serous OC (HR = 0.44; 95%CI 0.32-0.60; p= 1.95 × 10 - 7) and in patients carrying a gBRCA1 pathogenic variant (HR = 0.65; 95%CI 0.48-0.87; p= 4.53 × 10 - 3). The multivariate analysis interrogating the effect of PRDM1 rs2185379 with other significant prognostic factors revealed marginal association of PRDM1 rs2185379 with worse survival in postmenopausal women (HR = 1.54; 95%CI 1.01-2.38; p= 0.046). CONCLUSIONS: Unlike age at diagnosis, OC histology or gBRCA1 status, rs2185379 in PRDM1 is unlikely a marker of long-term survival in patients with advance OC.


Assuntos
Proteína BRCA1 , Biomarcadores Tumorais , Neoplasias Ovarianas , Fator 1 de Ligação ao Domínio I Regulador Positivo , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Prognóstico , Biomarcadores Tumorais/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Pessoa de Meia-Idade , Proteína BRCA1/genética , Idoso , Adulto , Polimorfismo de Nucleotídeo Único , Estadiamento de Neoplasias , Genótipo , Idoso de 80 Anos ou mais
6.
Sci Rep ; 14(1): 16183, 2024 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003285

RESUMO

The subset of ovarian cancer (OC) diagnosed ≤ 30yo represents a distinct subgroup exhibiting disparities from late-onset OC in many aspects, including indefinite germline cancer predisposition. We performed DNA/RNA-WES with HLA-typing, PRS assessment and survival analysis in 123 early-onset OC-patients compared to histology/stage-matched late-onset and unselected OC-patients, and population-matched controls. Only 6/123(4.9%) early-onset OC-patients carried a germline pathogenic variant (GPV) in high-penetrance OC-predisposition genes. Nevertheless, our comprehensive germline analysis of early-onset OC-patients revealed two divergent trajectories of potential germline susceptibility. Firstly, overrepresentation analysis highlighted a connection to breast cancer (BC) that was supported by the CHEK2 GPV enrichment in early-onset OC(p = 1.2 × 10-4), and the presumably BC-specific PRS313, which successfully stratified early-onset OC-patients from controls(p = 0.03). The second avenue pointed towards the impaired immune response, indicated by LY75-CD302 GPV(p = 8.3 × 10-4) and diminished HLA diversity compared with controls(p = 3 × 10-7). Furthermore, we found a significantly higher overall GPV burden in early-onset OC-patients compared to controls(p = 3.8 × 10-4). The genetic predisposition to early-onset OC appears to be a heterogeneous and complex process that goes beyond the traditional Mendelian monogenic understanding of hereditary cancer predisposition, with a significant role of the immune system. We speculate that rather a cumulative overall GPV burden than specific GPV may potentially increase OC risk, concomitantly with reduced HLA diversity.


Assuntos
Idade de Início , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Adulto , Pessoa de Meia-Idade , Estudos de Casos e Controles , Adulto Jovem , Quinase do Ponto de Checagem 2/genética
7.
Breast ; 75: 103721, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554551

RESUMO

Germline CHEK2 pathogenic variants confer an increased risk of female breast cancer (FBC). Here we describe a recurrent germline intronic variant c.1009-118_1009-87delinsC, which showed a splice acceptor shift in RNA analysis, introducing a premature stop codon (p.Tyr337PhefsTer37). The variant was found in 21/10,204 (0.21%) Czech FBC patients compared to 1/3250 (0.03%) controls (p = 0.04) and in 4/3639 (0.11%) FBC patients from an independent German dataset. In addition, we found this variant in 5/2966 (0.17%) Czech (but none of the 443 German) ovarian cancer patients, three of whom developed early-onset tumors. Based on these observations, we classified this variant as likely pathogenic.


Assuntos
Neoplasias da Mama , Quinase do Ponto de Checagem 2 , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Íntrons , Splicing de RNA , Humanos , Feminino , Quinase do Ponto de Checagem 2/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Íntrons/genética , Splicing de RNA/genética , República Tcheca , Adulto , Pessoa de Meia-Idade , Precursores de RNA/genética , Alemanha , Neoplasias Ovarianas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA