Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8014): 1133-1141, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750368

RESUMO

The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.


Assuntos
Maleato de Dizocilpina , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Obesidade , Receptores de N-Metil-D-Aspartato , Animais , Humanos , Masculino , Camundongos , Ratos , Tronco Encefálico/metabolismo , Tronco Encefálico/efeitos dos fármacos , Modelos Animais de Doenças , Maleato de Dizocilpina/efeitos adversos , Maleato de Dizocilpina/farmacologia , Maleato de Dizocilpina/uso terapêutico , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
2.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330837

RESUMO

Ca2+/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) is a key neuronal signaling protein and an emerging drug target. The central hub domain regulates the activity of CaMKIIα by organizing the holoenzyme complex into functional oligomers, yet pharmacological modulation of the hub domain has never been demonstrated. Here, using a combination of photoaffinity labeling and chemical proteomics, we show that compounds related to the natural substance γ-hydroxybutyrate (GHB) bind selectively to CaMKIIα. By means of a 2.2-Å x-ray crystal structure of ligand-bound CaMKIIα hub, we reveal the molecular details of the binding site deep within the hub. Furthermore, we show that binding of GHB and related analogs to this site promotes concentration-dependent increases in hub thermal stability believed to alter holoenzyme functionality. Selectively under states of pathological CaMKIIα activation, hub ligands provide a significant and sustained neuroprotection, which is both time and dose dependent. This is demonstrated in neurons exposed to excitotoxicity and in a mouse model of cerebral ischemia with the selective GHB analog, HOCPCA (3-hydroxycyclopent-1-enecarboxylic acid). Together, our results indicate a hitherto unknown mechanism for neuroprotection by a highly specific and unforeseen interaction between the CaMKIIα hub domain and small molecule brain-penetrant GHB analogs. This establishes GHB analogs as powerful tools for investigating CaMKII neuropharmacology in general and as potential therapeutic compounds for cerebral ischemia in particular.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Oxibato de Sódio/metabolismo , Sítios de Ligação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Ácidos Carboxílicos/farmacologia , Cristalografia por Raios X , Ciclopentanos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neuroproteção , Ligação Proteica , Domínios Proteicos , Transdução de Sinais
3.
FASEB J ; 34(11): 15480-15491, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32969079

RESUMO

Thyroid hormones are important for homeostatic control of energy metabolism and body temperature. Although skeletal muscle is considered a key site for thyroid action, the contribution of thyroid hormone receptor signaling in muscle to whole-body energy metabolism and body temperature has not been resolved. Here, we show that T3-induced increase in energy expenditure requires thyroid hormone receptor alpha 1 (TRα1 ) in skeletal muscle, but that T3-mediated elevation in body temperature is achieved in the absence of muscle-TRα1 . In slow-twitch soleus muscle, loss-of-function of TRα1 (TRαHSACre ) alters the fiber-type composition toward a more oxidative phenotype. The change in fiber-type composition, however, does not influence the running capacity or motivation to run. RNA-sequencing of soleus muscle from WT mice and TRαHSACre mice revealed differentiated transcriptional regulation of genes associated with muscle thermogenesis, such as sarcolipin and UCP3, providing molecular clues pertaining to the mechanistic underpinnings of TRα1 -linked control of whole-body metabolic rate. Together, this work establishes a fundamental role for skeletal muscle in T3-stimulated increase in whole-body energy expenditure.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/fisiologia , Receptores alfa dos Hormônios Tireóideos/fisiologia , Hormônios Tireóideos/farmacologia , Animais , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/citologia , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Condicionamento Físico Animal , Transcriptoma
4.
J Lipid Res ; 61(1): 10-19, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31719103

RESUMO

Excessive circulating FAs have been proposed to promote insulin resistance (IR) of glucose metabolism by increasing the oxidation of FAs over glucose. Therefore, inhibition of FA oxidation (FAOX) has been suggested to ameliorate IR. However, prolonged inhibition of FAOX would presumably cause lipid accumulation and thereby promote lipotoxicity. To understand the glycemic consequences of acute and prolonged FAOX inhibition, we treated mice with the carnitine palmitoyltransferase 1 (CPT-1) inhibitor, etomoxir (eto), in combination with short-term 45% high fat diet feeding to increase FA availability. Eto acutely increased glucose oxidation and peripheral glucose disposal, and lowered circulating glucose, but this was associated with increased circulating FAs and triacylglycerol accumulation in the liver and heart within hours. Several days of FAOX inhibition by daily eto administration induced hepatic steatosis and glucose intolerance, specific to CPT-1 inhibition by eto. Lower whole-body insulin sensitivity was accompanied by reduction in brown adipose tissue (BAT) uncoupling protein 1 (UCP1) protein content, diminished BAT glucose clearance, and increased hepatic glucose production. Collectively, these data suggest that pharmacological inhibition of FAOX is not a viable strategy to treat IR, and that sufficient rates of FAOX are required for maintaining liver and BAT metabolic function.


Assuntos
Compostos de Epóxi/farmacologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Animais , Dieta Hiperlipídica , Compostos de Epóxi/administração & dosagem , Ácidos Graxos/química , Intolerância à Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos
5.
Diabetologia ; 63(6): 1236-1247, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32140744

RESUMO

AIMS/HYPOTHESIS: Treatment with the α3ß4 nicotinic acetylcholine receptor (nAChR) agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), improves glucose tolerance in diet-induced obese (DIO) mice, but the physiological and molecular mechanisms are unknown. METHODS: DMPP (10 mg/kg body weight, s.c.) was administered either in a single injection (acute) or daily for up to 14 days (chronic) in DIO wild-type (WT) and Chrnb4 knockout (KO) mice and glucose tolerance, tissue-specific tracer-based glucose metabolism, and insulin signalling were assessed. RESULTS: In WT mice, but not in Chrnb4 KO mice, single acute treatment with DMPP induced transient hyperglycaemia, which was accompanied by high plasma adrenaline (epinephrine) levels, upregulated hepatic gluconeogenic genes, and decreased hepatic glycogen content. In contrast to these acute effects, chronic DMPP treatment in WT mice elicited improvements in glucose tolerance already evident after three consecutive days of DMPP treatment. After seven days of DMPP treatment, glucose tolerance was markedly improved, also in comparison with mice that were pair-fed to DMPP-treated mice. The glycaemic benefit of chronic DMPP was absent in Chrnb4 KO mice. Chronic DMPP increased insulin-stimulated glucose clearance into brown adipose tissue (+69%), heart (+93%), gastrocnemius muscle (+74%) and quadriceps muscle (+59%), with no effect in white adipose tissues. After chronic DMPP treatment, plasma adrenaline levels did not increase following an injection with DMPP. In glucose-stimulated skeletal muscle, we detected a decreased phosphorylation of the inhibitory Ser640 phosphorylation site on glycogen synthase and a congruent increase in glycogen accumulation following chronic DMPP treatment. CONCLUSIONS/INTERPRETATION: Our data suggest that DMPP acutely induces adrenaline release and hepatic glycogenolysis, while chronic DMPP-mediated activation of ß4-containing nAChRs improves peripheral insulin sensitivity independently of changes in body weight via mechanisms that could involve increased non-oxidative glucose disposal into skeletal muscle.


Assuntos
Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Glicemia/efeitos dos fármacos , Catecolaminas/metabolismo , Iodeto de Dimetilfenilpiperazina/uso terapêutico , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Knockout , Agonistas Nicotínicos/uso terapêutico
6.
J Neurochem ; 138(6): 806-20, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27344019

RESUMO

Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with nAChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross-linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane-bound protein that binds to multiple nAChR subtypes in the human brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit nAChR-mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post-natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx protein Lypd6 binds to nAChRs in human brain extracts, and that recombinant Lypd6 decreases nicotine-induced ERK phosphorylation and attenuates nicotine-induced hippocampal inward currents. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain.


Assuntos
Antígenos Ly/metabolismo , Receptores Nicotínicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Recém-Nascidos , Antígenos Ly/genética , Química Encefálica/genética , Proteínas Ligadas por GPI , Humanos , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Células PC12 , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/genética , Lobo Temporal/química , Distribuição Tecidual
7.
Synapse ; 69(4): 226-32, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25684736

RESUMO

Individual differences in coping style emerge as a function of underlying variability in the activation of a mesocorticolimbic brain circuitry. Particularly serotonin seems to play an important role. For this reason, we assessed serotonin-2A receptor (5-HT2A R) binding in the brain of rats with different coping styles. We compared proactive and reactive males of two rat strains, Wild-type Groningen (WTG) and Roman high- and low avoidance (RHA, RLA). 5-HT2A R binding in (pre)frontal cortex (FC) and hippocampus was investigated using a radiolabeled antagonist ([(3) H]MDL-100907) and agonist ([(3) H]Cimbi-36) in binding assays. No differences in 5-HT2A R binding were observed in male animals with different coping styles. [(3) H]MDL-100907 displayed a higher specific-to-nonspecific binding ratio than [(3) H]Cimbi-36. Our findings suggest that in these particular rat strains, 5-HT2A R binding is not an important molecular marker for coping style. Because neither an antagonist nor an agonist tracer showed any binding differences, it is unlikely that the affinity state of the 5-HT2A R is co-varying with levels of aggression or active avoidance in WTG, RHA and RLA.


Assuntos
Adaptação Psicológica/efeitos dos fármacos , Agressão/fisiologia , Encéfalo/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Animais , Aprendizagem da Esquiva/fisiologia , Benzilaminas/farmacocinética , Encéfalo/efeitos dos fármacos , Fluorbenzenos/farmacocinética , Masculino , Fenetilaminas/farmacocinética , Piperidinas/farmacocinética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Ratos , Ratos Endogâmicos , Serotonina/metabolismo , Antagonistas da Serotonina/farmacocinética , Agonistas do Receptor de Serotonina/farmacocinética , Trítio/farmacocinética
8.
J Neurosci Res ; 91(5): 634-41, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23404493

RESUMO

Prefrontal serotonin 2A receptors (5-HT2A Rs) have been linked to the pathogenesis and treatment of schizophrenia. Many antipsychotics fully occupy 5-HT2A R at clinical relevant doses, and activation of 5-HT2A receptors by lysergic acid diethylamide (LSD) and LSD-like drugs induces a schizophrenia-like psychosis in humans. Subchronic phencyclidine (PCP) administration is a well-established model for schizophrenia-like symptoms in rodents. The aim of the present study was to investigate whether subchronic PCP administration changes expression, binding, or functionality of cortical 5-HT2A Rs. As a measure of 5-HT2A R functionality, we used the 5-HT2A R agonist 2,5-dimethoxy-4-iodoamphetamine (DOI)-induced head-twitch response (HTR) and mRNA expression of the immediate-early genes (IEGs) activity-related cytoskeletal associated-protein (Arc), c-fos, and early growth response protein 2 (egr-2) in the frontal cortex. Mice were treated with PCP (10 mg/kg) or saline for 10 days, followed by a 5-day washout period. The PCP pretreatment increased the overall induction of HTR and frontal cortex IEG mRNA expression following a single challenge with DOI. These functional changes were not associated with changes in 5-HT2A R binding. Also, binding of the 5-HT1A R and the 5-HT transporter was unaffected. Finally, basal mRNA level of Arc was increased in the prefrontal cortex after subchronic PCP administration as revealed with in situ hybridization. Together these findings indicate that PCP administration produces changes in the brain that result in an increase in the absolute effect of DOI. Therefore, neurotransmission involving the 5-HT2A R could contribute to the behavioral deficits observed after PCP treatment. © 2013 Wiley Periodicals, Inc.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fenciclidina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Receptores 5-HT2 de Serotonina/metabolismo , Esquizofrenia/induzido quimicamente , Esquizofrenia/patologia , Transdução de Sinais/efeitos dos fármacos , Complexo Relacionado com a AIDS/genética , Complexo Relacionado com a AIDS/metabolismo , Anfetaminas/farmacologia , Análise de Variância , Animais , Autorradiografia , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Genes Precoces/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenciclidina/toxicidade , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Fatores de Tempo
9.
Synapse ; 67(9): 620-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23536493

RESUMO

The beneficial effect of exercise on hippocampal plasticity is possibly mediated by increased angiogenesis and neurogenesis. In angiogenesis, insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), and hypoxia-inducible factor 1, alpha subunit (HIF1α) are important factors, while the induction of neurogenesis requires signaling through the VEGF receptor, Flk-1 (VEGFR-2). VEGF expression is believed to be regulated by two distinct mTOR (mammalian target of Rapamycin)-containing multiprotein complexes mTORC1 and mTORC2, respectively. This study was initiated to investigate the effect of exercise on the expression of VEGF, cognate receptors, HIF1α, mTORC1, and mTORC2 in hippocampus and frontal cortex. To this end, we measured messenger RNA (mRNA) levels in rat brain using quantitative real-time polymerase chain reaction (real-time qPCR) after forced treadmill exercise for 1 day, 2 weeks, and 8 weeks. Rats were euthanized either immediately (0 h) or 24 h after last exercise session. Here, we show that exercise affected mRNA levels of VEGF, VEGFR2, and the coreceptor neuropilin 2 (NRP2) when the rats were euthanized immediately, whereas at 24 h only the expression of mTOR was regulated after a single bout of exercise. In conclusion, the effect of treadmill exercise on the VEGF system is acute rather than chronic and there is a transient activation of mTOR. More studies are needed to understand whether this could be beneficial in the treatment of neuropsychiatric disorders.


Assuntos
Complexos Multiproteicos/metabolismo , Esforço Físico , Serina-Treonina Quinases TOR/metabolismo , Animais , Teste de Esforço , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/genética , Neuropilina-2/genética , Neuropilina-2/metabolismo , Ratos , Ratos Wistar , Serina-Treonina Quinases TOR/genética , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Synapse ; 67(11): 794-800, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23766023

RESUMO

Brain-derived neurotrophic factor (BDNF) is important for neuronal survival and plasticity. Incorporation of matured receptor proteins is an integral part of synapse formation. However, whether BDNF increases synthesis and integration of receptors in functional synapses directly is unclear. We are particularly interested in the regulation of the 5-hydroxytryptamine receptor 2A (5-HT(2A)R). This receptor form a functional complex with the metabotropic glutamate receptor 2 (mGluR2) and is recruited to the cell membrane by the corticotrophin-releasing factor receptor 1 (CRF-R1). The effect of BDNF on gene expression for all these receptors, as well as a number of immediate-early genes, was pharmacologically characterized in primary neurons from rat frontal cortex. BDNF increased CRF-R1 mRNA levels up to fivefold, whereas mGluR2 mRNA levels were proportionally downregulated. No effect on 5-HT(2A)R mRNA was seen. The effects were dose-dependent with half-maximal effective concentrations (EC(50)) around 1 ng/ml. After 24 h of incubation with BDNF, CRF-R1 mRNA levels had returned to baseline levels, whereas mGluR2 mRNA levels remained low. A significant reduction of all three receptor transcripts was observed after neuronal depolarization produced by high potassium. This study emphasizes the role of BDNF as an important regulator of receptor compositions in the synapse and provides further evidence that BDNF directly regulates important drug targets involved in cognition and mood.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Lobo Frontal/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Genes Precoces , Potenciais da Membrana , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Potássio/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Glutamato Metabotrópico/genética , Sinapses/metabolismo , Transcrição Gênica
11.
J Cereb Blood Flow Metab ; 43(8): 1419-1434, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37026450

RESUMO

Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a major contributor to physiological and pathological glutamate-mediated Ca2+ signals, and its involvement in various critical cellular pathways demands specific pharmacological strategies. We recently presented γ-hydroxybutyrate (GHB) ligands as the first small molecules selectively targeting and stabilizing the CaMKIIα hub domain. Here, we report that the cyclic GHB analogue 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA), improves sensorimotor function after experimental stroke in mice when administered at a clinically relevant time and in combination with alteplase. Further, we observed improved hippocampal neuronal activity and working memory after stroke. On the biochemical level, we observed that hub modulation by HOCPCA results in differential effects on distinct CaMKII pools, ultimately alleviating aberrant CaMKII signalling after cerebral ischemia. As such, HOCPCA normalised cytosolic Thr286 autophosphorylation after ischemia in mice and downregulated ischemia-specific expression of a constitutively active CaMKII kinase proteolytic fragment. Previous studies suggest holoenzyme stabilisation as a potential mechanism, yet a causal link to in vivo findings requires further studies. Similarly, HOCPCA's effects on dampening inflammatory changes require further investigation as an underlying protective mechanism. HOCPCA's selectivity and absence of effects on physiological CaMKII signalling highlight pharmacological modulation of the CaMKIIα hub domain as an attractive neuroprotective strategy.


Assuntos
Oxibato de Sódio , Acidente Vascular Cerebral , Camundongos , Animais , Oxibato de Sódio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cognição
12.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34849709

RESUMO

Growth differentiation factor 15 (GDF15) has recently moved to the forefront of metabolism research. When administered pharmacologically, GDF15 reduces food intake and lowers body weight via the hindbrain-situated receptor GFRAL (glial cell-derived neurotrophic factor family receptor alpha-like). Endogenous GDF15 is a ubiquitous cellular stress signal that can be produced and secreted by a variety of cell types. Circulating levels are elevated in a series of disease states, but also in response to exogenous agents such as metformin, colchicine, AICAR, and cisplatin. Recently, exercise has emerged as a relevant intervention to interrogate GDF15 physiology. Prolonged endurance exercise increases circulating GDF15 to levels otherwise associated with certain pathological states and in response to metformin treatment. The jury is still out on whether GDF15 is a functional "exerkine" mediating organ-to-brain crosstalk or whether it is a coincidental bystander. In this review, we discuss the putative physiological implication of exercise-induced GDF15, focusing on the potential impact on appetite and metabolism.


Assuntos
Apetite/fisiologia , Ingestão de Alimentos/fisiologia , Exercício Físico/fisiologia , Comportamento Alimentar/fisiologia , Fator 15 de Diferenciação de Crescimento/metabolismo , Músculo Esquelético/metabolismo , Animais , Humanos , Condicionamento Físico Animal/fisiologia , Transdução de Sinais/fisiologia
13.
Endocrinology ; 163(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35352108

RESUMO

INTRODUCTION: Liver-expressed antimicrobial peptide-2 (LEAP2) is an endogenous ghrelin receptor antagonist, which is upregulated in the fed state and downregulated during fasting. We hypothesized that the ketone body beta-hydroxybutyrate (BHB) is involved in the downregulation of LEAP2 during conditions with high circulating levels of BHB. METHODS: Hepatic and intestinal Leap2 expression were determined in 3 groups of mice with increasing circulating levels of BHB: prolonged fasting, prolonged ketogenic diet, and oral BHB treatment. LEAP2 levels were measured in lean and obese individuals, in human individuals following endurance exercise, and in mice after BHB treatment. Lastly, we investigated Leap2 expression in isolated murine hepatocytes challenged with BHB. RESULTS: We confirmed increased circulating LEAP2 levels in individuals with obesity compared to lean individuals. The recovery period after endurance exercise was associated with increased plasma levels of BHB levels and decreased LEAP2 levels in humans. Leap2 expression was selectively decreased in the liver after fasting and after exposure to a ketogenic diet for 3 weeks. Importantly, we found that oral administration of BHB increased circulating levels of BHB in mice and decreased Leap2 expression levels and circulating LEAP2 plasma levels, as did Leap2 expression after direct exposure to BHB in isolated murine hepatocytes. CONCLUSION: From our data, we suggest that LEAP2 is downregulated during different states of energy deprivation in both humans and rodents. Furthermore, we here provide evidence that the ketone body, BHB, which is highly upregulated during fasting metabolism, directly downregulates LEAP2 levels. This may be relevant in ghrelin receptor-induced hunger signaling during energy deprivation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Dieta Cetogênica , Receptores de Grelina , Ácido 3-Hidroxibutírico/metabolismo , Animais , Grelina/metabolismo , Fígado/metabolismo , Camundongos , Obesidade/metabolismo , Receptores de Grelina/metabolismo
14.
Cell Rep ; 40(8): 111258, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001956

RESUMO

Metformin is a blood-glucose-lowering medication with physiological effects that extend beyond its anti-diabetic indication. Recently, it was reported that metformin lowers body weight via induction of growth differentiation factor 15 (GDF15), which suppresses food intake by binding to the GDNF family receptor α-like (GFRAL) in the hindbrain. Here, we corroborate that metformin increases circulating GDF15 in mice and humans, but we fail to confirm previous reports that the GDF15-GFRAL pathway is necessary for the weight-lowering effects of metformin. Instead, our studies in wild-type, GDF15 knockout, and GFRAL knockout mice suggest that the GDF15-GFRAL pathway is dispensable for the effects of metformin on energy balance. The data presented here question whether metformin is a sufficiently strong stimulator of GDF15 to drive anorexia and weight loss and emphasize that additional work is needed to untangle the relationship among metformin, GDF15, and energy balance.


Assuntos
Fator 15 de Diferenciação de Crescimento , Metformina , Animais , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Obesidade/metabolismo , Redução de Peso
15.
Int J Neuropsychopharmacol ; 14(3): 347-53, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20604989

RESUMO

Brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity, neuronal differentiation and survival of neurons. Observations of decreased serum BDNF levels in patients with neuropsychiatric disorders have highlighted the potential of BDNF as a biomarker, but so far there have been no studies directly comparing blood BDNF levels to brain BDNF levels in different species. We examined blood, serum, plasma and brain-tissue BDNF levels in three different mammalian species: rat, pig, and mouse, using an ELISA method. As a control, we included an analysis of blood and brain tissue from conditional BDNF knockout mice and their wild-type littermates. Whereas BDNF could readily be measured in rat blood, plasma and brain tissue, it was undetectable in mouse blood. In pigs, whole-blood levels of BDNF could not be measured with a commercially available ELISA kit, but pig plasma BDNF levels (mean 994±186 pg/ml) were comparable to previously reported values in humans. We demonstrated positive correlations between whole-blood BDNF levels and hippocampal BDNF levels in rats (r2=0.44, p=0.025) and between plasma BDNF and hippocampal BDNF in pigs (r2=0.41, p=0.025). Moreover, we found a significant positive correlation between frontal cortex and hippocampal BDNF levels in mice (r2=0.81, p=0.0139). Our data support the view that measures of blood and plasma BDNF levels reflect brain-tissue BDNF levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/sangue , Encéfalo/metabolismo , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Ratos , Reprodutibilidade dos Testes , Especificidade da Espécie , Suínos
16.
J Parkinsons Dis ; 11(4): 1773-1790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151857

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder associated with insoluble pathological aggregates of the protein α-synuclein. While PD is diagnosed by motor symptoms putatively due to aggregated α-synuclein-mediated damage to substantia nigra (SN) neurons, up to a decade before motor symptom appearance, patients exhibit sleep disorders (SDs). Therefore, we hypothesized that α-synuclein, which can be present in monomeric, fibril, and other forms, has deleterious cellular actions on sleep-control nuclei. OBJECTIVE: We investigated whether native monomer and fibril forms of α-synuclein have effects on neuronal function, calcium dynamics, and cell-death-induction in two sleep-controlling nuclei: the laterodorsal tegmentum (LDT), and the pedunculopontine tegmentum (PPT), as well as the motor-controlling SN. METHODS: Size exclusion chromatography, Thioflavin T fluorescence assays, and circular dichroism spectroscopy were used to isolate structurally defined forms of recombinant, human α-synuclein. Neuronal and viability effects of characterized monomeric and fibril forms of α-synuclein were determined on LDT, PPT, and SN neurons using electrophysiology, calcium imaging, and neurotoxicity assays. RESULTS: In LDT and PPT neurons, both forms of α-synuclein induced excitation and increased calcium, and the monomeric form heightened putatively excitotoxic neuronal death, whereas, in the SN, we saw inhibition, decreased intracellular calcium, and monomeric α-synuclein was not associated with heightened cell death. CONCLUSION: Nucleus-specific differential effects suggest mechanistic underpinnings of SDs' prodromal appearance in PD. While speculative, we hypothesize that the monomeric form of α-synuclein compromises functionality of sleep-control neurons, leading to the presence of SDs decades prior to motor dysfunction.


Assuntos
Doença de Parkinson , Transtornos do Sono-Vigília , alfa-Sinucleína , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Núcleo Tegmental Pedunculopontino/metabolismo , Transtornos do Sono-Vigília/etiologia , Substância Negra/metabolismo , Tegmento Mesencefálico/metabolismo , alfa-Sinucleína/metabolismo
17.
Nat Commun ; 12(1): 1041, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589633

RESUMO

Growing evidence supports that pharmacological application of growth differentiation factor 15 (GDF15) suppresses appetite but also promotes sickness-like behaviors in rodents via GDNF family receptor α-like (GFRAL)-dependent mechanisms. Conversely, the endogenous regulation of GDF15 and its physiological effects on energy homeostasis and behavior remain elusive. Here we show, in four independent human studies that prolonged endurance exercise increases circulating GDF15 to levels otherwise only observed in pathophysiological conditions. This exercise-induced increase can be recapitulated in mice and is accompanied by increased Gdf15 expression in the liver, skeletal muscle, and heart muscle. However, whereas pharmacological GDF15 inhibits appetite and suppresses voluntary running activity via GFRAL, the physiological induction of GDF15 by exercise does not. In summary, exercise-induced circulating GDF15 correlates with the duration of endurance exercise. Yet, higher GDF15 levels after exercise are not sufficient to evoke canonical pharmacological GDF15 effects on appetite or responsible for diminishing exercise motivation.


Assuntos
Regulação do Apetite/fisiologia , Exercício Físico/fisiologia , Comportamento Alimentar/fisiologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator 15 de Diferenciação de Crescimento/genética , Resistência Física/fisiologia , Adulto , Animais , Creatina Quinase/sangue , Creatina Quinase/genética , Regulação da Expressão Gênica , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/deficiência , Fator 15 de Diferenciação de Crescimento/sangue , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Interleucina-10/sangue , Interleucina-10/genética , Interleucina-6/administração & dosagem , Leptina/sangue , Leptina/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Motivação/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Condicionamento Físico Animal , Fatores de Tempo
18.
Synapse ; 64(7): 561-5, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20222154

RESUMO

Epidemiological studies have revealed a strong genetic contribution to the risk for depression. Both reduced hippocampal serotonin neurotransmission and brain-derived neurotrophic factor (BDNF) levels have been associated with increased depression vulnerability and are also regulated during aging. Brains from young (5 months old) and old (13 months old) congenital Learned Helplessness rats (cLH), and congenital Non Learned Helplessness rats (cNLH) were immunohistochemically stained for the serotonin transporter and subsequently stereologically quantified for estimating hippocampal serotonin fiber density. Hippocampal BDNF protein levels were measured by ELISA. An exacerbated age-related loss of serotonin fiber density specific for the CA1 area was observed in the cLH animals, whereas reduced hippocampal BDNF levels were seen in young and old cLH when compared with age-matched cNLH controls. These observations indicate that aging should be taken into account when studying the neurobiological factors behind the vulnerability for depression and that understanding the effect of aging on genetically predisposed individuals may contribute to a better understanding of the pathophysiology behind depression, particularly in the elderly.


Assuntos
Envelhecimento/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Hipocampo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Contagem de Células , Ensaio de Imunoadsorção Enzimática , Desamparo Aprendido , Imuno-Histoquímica , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
19.
Basic Clin Pharmacol Toxicol ; 121(2): 119-129, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28299900

RESUMO

δ-Containing GABAA receptors are located extrasynaptically and mediate tonic inhibition. Their involvement in brain physiology positions them as interesting drug targets. There is thus a continued interest in establishing reliable recombinant expression systems for δ-containing GABAA receptors. Inconveniently, the recombinant expression of especially α4 ß1/3 δ receptors has been found to be notoriously difficult, resulting in mixed receptor populations and/or stoichiometries and differential pharmacology depending on the expression system used. With the aim of developing a facile and robust 96-well format cell-based assay for extrasynaptic α4 ß1/3 δ receptors, we have engineered and validated a HEK293 Flp-In™ cell line stably expressing the human GABAA δ-subunit. Upon co-transfection of α4 and ß1/3 subunits, at optimized ratios, we have established a well-defined system for expressing α4 ß1/3 δ receptors and used the fluorescence-based FLIPR Membrane Potential (FMP) assay to evaluate their pharmacology. Using the known reference compounds GABA and THIP, ternary α4 ß1/3 δ and binary α4 ß1/3 receptors could be distinguished based on potency and kinetic profiles but not efficacy. As expected, DS2 was able to potentiate only δ-containing receptors, whereas Zn2+ had an inhibitory effect only at binary receptors. By contrast, the hitherto reported δ-selective compounds, AA29504 and 3-OH-2'MeO6MF, were non-selective. The expression system was further validated using patch clamp electrophysiology, in which the superagonism of THIP was confirmed. The established FMP assay set-up, based on transient expression of human α4 and ß1/3 subunits into a δ-subunit stable HEK293 Flp-In™ cell line, portrays a simple 96-well format assay as a useful supplement to electrophysiological recordings on δ-containing GABAA receptors.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Receptores de GABA-A/metabolismo , Corantes Fluorescentes/química , Agonistas GABAérgicos/farmacologia , Células HEK293 , Humanos , Imuno-Histoquímica , Cinética , Potenciais da Membrana/efeitos dos fármacos , Microscopia Confocal , Mutação , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Receptores de GABA-A/química , Receptores de GABA-A/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Zinco/farmacologia , Ácido gama-Aminobutírico/metabolismo
20.
Biochem Pharmacol ; 87(2): 220-8, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24269284

RESUMO

γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain.


Assuntos
Química Encefálica/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Oxibato de Sódio/administração & dosagem , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Química Encefálica/fisiologia , Sistema Nervoso Central/química , Sistema Nervoso Central/metabolismo , Humanos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Receptores de GABA-A/fisiologia , Receptores de GABA-B/fisiologia , Oxibato de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA