Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 607(7919): 527-533, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794479

RESUMO

Immature dentate granule cells (imGCs) arising from adult hippocampal neurogenesis contribute to plasticity and unique brain functions in rodents1,2 and are dysregulated in multiple human neurological disorders3-5. Little is known about the molecular characteristics of adult human hippocampal imGCs, and even their existence is under debate1,6-8. Here we performed single-nucleus RNA sequencing aided by a validated machine learning-based analytic approach to identify imGCs and quantify their abundance in the human hippocampus at different stages across the lifespan. We identified common molecular hallmarks of human imGCs across the lifespan and observed age-dependent transcriptional dynamics in human imGCs that suggest changes in cellular functionality, niche interactions and disease relevance, that differ from those in mice9. We also found a decreased number of imGCs with altered gene expression in Alzheimer's disease. Finally, we demonstrated the capacity for neurogenesis in the adult human hippocampus with the presence of rare dentate granule cell fate-specific proliferating neural progenitors and with cultured surgical specimens. Together, our findings suggest the presence of a substantial number of imGCs in the adult human hippocampus via low-frequency de novo generation and protracted maturation, and our study reveals their molecular properties across the lifespan and in Alzheimer's disease.


Assuntos
Envelhecimento , Hipocampo , Longevidade , Neurogênese , Neurônios , Adulto , Envelhecimento/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Proliferação de Células , Giro Denteado/citologia , Giro Denteado/patologia , Perfilação da Expressão Gênica , Hipocampo/citologia , Hipocampo/patologia , Humanos , Longevidade/genética , Aprendizado de Máquina , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Análise de Célula Única , Transcrição Gênica
2.
Cell ; 149(2): 483-96, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22500809

RESUMO

Although there have been major advances in elucidating the functional biology of the human brain, relatively little is known of its cellular and molecular organization. Here we report a large-scale characterization of the expression of ∼1,000 genes important for neural functions by in situ hybridization at a cellular resolution in visual and temporal cortices of adult human brains. These data reveal diverse gene expression patterns and remarkable conservation of each individual gene's expression among individuals (95%), cortical areas (84%), and between human and mouse (79%). A small but substantial number of genes (21%) exhibited species-differential expression. Distinct molecular signatures, comprised of genes both common between species and unique to each, were identified for each major cortical cell type. The data suggest that gene expression profile changes may contribute to differential cortical function across species, and in particular, a shift from corticosubcortical to more predominant corticocortical communications in the human brain.


Assuntos
Perfilação da Expressão Gênica , Neocórtex/metabolismo , Lobo Temporal/metabolismo , Córtex Visual/metabolismo , Adulto , Animais , Regulação da Expressão Gênica , Humanos , Camundongos , Neocórtex/citologia , Neurônios/metabolismo , Especificidade da Espécie , Lobo Temporal/citologia , Córtex Visual/citologia
3.
PLoS Genet ; 19(10): e1010989, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37831723

RESUMO

The effect of schizophrenia (SCZ) genetic risk on gene expression in brain remains elusive. A popular approach to this problem has been the application of gene co-expression network algorithms (e.g., WGCNA). To improve reliability with this method it is critical to remove unwanted sources of variance while also preserving biological signals of interest. In this WCGNA study of RNA-Seq data from postmortem prefrontal cortex (78 neurotypical donors, EUR ancestry), we tested the effects of SCZ genetic risk on co-expression networks. Specifically, we implemented a novel design in which gene expression was adjusted by linear regression models to preserve or remove variance explained by biological signal of interest (GWAS genomic scores for SCZ risk-(GS-SCZ), and genomic scores- GS of height (GS-Ht) as a negative control), while removing variance explained by covariates of non-interest. We calculated co-expression networks from adjusted expression (GS-SCZ and GS-Ht preserved or removed), and consensus between them (representative of a "background" network free of genomic scores effects). We then tested the overlap between GS-SCZ preserved modules and background networks reasoning that modules with reduced overlap would be most affected by GS-SCZ biology. Additionally, we tested these modules for convergence of SCZ risk (i.e., enrichment in PGC3 SCZ GWAS priority genes, enrichment in SCZ risk heritability and relevant biological ontologies. Our results highlight key aspects of GS-SCZ effects on brain co-expression networks, specifically: 1) preserving/removing SCZ genetic risk alters the co-expression modules; 2) biological pathways enriched in modules affected by GS-SCZ implicate processes of transcription, translation and metabolism that converge to influence synaptic transmission; 3) priority PGC3 SCZ GWAS genes and SCZ risk heritability are enriched in modules associated with GS-SCZ effects. Overall, our results indicate that gene co-expression networks that selectively integrate information about genetic risk can reveal novel combinations of biological pathways involved in schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Reprodutibilidade dos Testes , Predisposição Genética para Doença , Encéfalo/metabolismo , Genômica , Estudo de Associação Genômica Ampla
4.
Proc Natl Acad Sci U S A ; 119(34): e2206069119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969790

RESUMO

There is growing evidence for the role of DNA methylation (DNAm) quantitative trait loci (mQTLs) in the genetics of complex traits, including psychiatric disorders. However, due to extensive linkage disequilibrium (LD) of the genome, it is challenging to identify causal genetic variations that drive DNAm levels by population-based genetic association studies. This limits the utility of mQTLs for fine-mapping risk loci underlying psychiatric disorders identified by genome-wide association studies (GWAS). Here we present INTERACT, a deep learning model that integrates convolutional neural networks with transformer, to predict effects of genetic variations on DNAm levels at CpG sites in the human brain. We show that INTERACT-derived DNAm regulatory variants are not confounded by LD, are concentrated in regulatory genomic regions in the human brain, and are convergent with mQTL evidence from genetic association analysis. We further demonstrate that predicted DNAm regulatory variants are enriched for heritability of brain-related traits and improve polygenic risk prediction for schizophrenia across diverse ancestry samples. Finally, we applied predicted DNAm regulatory variants for fine-mapping schizophrenia GWAS risk loci to identify potential novel risk genes. Our study shows the power of a deep learning approach to identify functional regulatory variants that may elucidate the genetic basis of complex traits.


Assuntos
Química Encefálica , Metilação de DNA , Aprendizado Profundo , Esquizofrenia , Encéfalo , Ilhas de CpG , Estudo de Associação Genômica Ampla , Humanos , Redes Neurais de Computação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Esquizofrenia/genética
5.
J Biol Chem ; 299(6): 104811, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172721

RESUMO

Proteasomes are large macromolecular complexes with multiple distinct catalytic activities that are each vital to human brain health and disease. Despite their importance, standardized approaches to investigate proteasomes have not been universally adapted. Here, we describe pitfalls and define straightforward orthogonal biochemical approaches essential to measure and understand changes in proteasome composition and activity in the mammalian central nervous system. Through our experimentation in the mammalian brain, we determined an abundance of catalytically active proteasomes exist with and without a 19S cap(s), the regulatory particle essential for ubiquitin-dependent degradation. Moreover, we learned that in-cell measurements using activity-based probes (ABPs) are more sensitive in determining the available activity of the 20S proteasome without the 19S cap and in measuring individual catalytic subunit activities of each ß subunit within all neuronal proteasomes. Subsequently, applying these tools to human brain samples, we were surprised to find that post-mortem tissue retained little to no 19S-capped proteasome, regardless of age, sex, or disease state. In comparing brain tissues (parahippocampal gyrus) from patients with Alzheimer's disease (AD) and unaffected individuals, the available 20S proteasome activity was significantly elevated in severe cases of AD, an observation not previously noted. Taken together, our study establishes standardized approaches for the comprehensive investigation of proteasomes in mammalian brain tissue, and we reveal new insight into brain proteasome biology.


Assuntos
Encéfalo , Complexo de Endopeptidases do Proteassoma , Animais , Humanos , Encéfalo/metabolismo , Citoplasma/metabolismo , Mamíferos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
6.
Genome Res ; 30(1): 1-11, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31852722

RESUMO

Transcriptome compartmentalization by the nuclear membrane provides both stochastic and functional buffering of transcript activity in the cytoplasm, and has recently been implicated in neurodegenerative disease processes. Although many mechanisms regulating transcript compartmentalization are also prevalent in brain development, the extent to which subcellular localization differs as the brain matures has yet to be addressed. To characterize the nuclear and cytoplasmic transcriptomes during brain development, we sequenced both RNA fractions from homogenate prenatal and adult human postmortem cortex using poly(A)+ and Ribo-Zero library preparation methods. We find that while many genes are differentially expressed by fraction and developmental expression changes are similarly detectable in nuclear and cytoplasmic RNA, the compartmented transcriptomes become more distinct as the brain matures, perhaps reflecting increased utilization of nuclear retention as a regulatory strategy in adult brain. We examined potential mechanisms of this developmental divergence including alternative splicing, RNA editing, nuclear pore composition, RNA-binding protein motif enrichment, and RNA secondary structure. Intron retention is associated with greater nuclear abundance in a subset of transcripts, as is enrichment for several splicing factor binding motifs. Finally, we examined disease association with fraction-regulated gene sets and found nuclear-enriched genes were also preferentially enriched in gene sets associated with neurodevelopmental psychiatric disorders. These results suggest that although gene-level expression is globally comparable between fractions, nuclear retention of transcripts may play an underappreciated role in developmental regulation of gene expression in brain, particularly in genes whose dysregulation is related to neuropsychiatric disorders.


Assuntos
Núcleo Celular/metabolismo , Córtex Cerebral/metabolismo , Citoplasma/metabolismo , Predisposição Genética para Doença , Transtornos Mentais/genética , Transtornos Mentais/psicologia , Transcriptoma , Fatores Etários , Processamento Alternativo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Edição de RNA
7.
BMC Neurosci ; 24(1): 6, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698068

RESUMO

BACKGROUND: Multispectral fluorescence imaging coupled with linear unmixing is a form of image data collection and analysis that allows for measuring multiple molecular signals in a single biological sample. Multiple fluorescent dyes, each measuring a unique molecule, are simultaneously measured and subsequently "unmixed" to provide a read-out for each molecular signal. This strategy allows for measuring highly multiplexed signals in a single data capture session, such as multiple proteins or RNAs in tissue slices or cultured cells, but can often result in mixed signals and bleed-through problems across dyes. Existing spectral unmixing algorithms are not optimized for challenging biological specimens such as post-mortem human brain tissue, and often require manual intervention to extract spectral signatures. We therefore developed an intuitive, automated, and flexible package called SUFI: spectral unmixing of fluorescent images. RESULTS: This package unmixes multispectral fluorescence images by automating the extraction of spectral signatures using vertex component analysis, and then performs one of three unmixing algorithms derived from remote sensing. We evaluate these remote sensing algorithms' performances on four unique biological datasets and compare the results to unmixing results obtained using ZEN Black software (Zeiss). We lastly integrate our unmixing pipeline into the computational tool dotdotdot, which is used to quantify individual RNA transcripts at single cell resolution in intact tissues and perform differential expression analysis, and thereby provide an end-to-end solution for multispectral fluorescence image analysis and quantification. CONCLUSIONS: In summary, we provide a robust, automated pipeline to assist biologists with improved spectral unmixing of multispectral fluorescence images.


Assuntos
Algoritmos , Software , Humanos , Animais , Camundongos , Microscopia de Fluorescência/métodos , Corantes Fluorescentes , Encéfalo/diagnóstico por imagem
8.
Mol Psychiatry ; 27(4): 2061-2067, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35236959

RESUMO

Antipsychotic drugs are the current first-line of treatment for schizophrenia and other psychotic conditions. However, their molecular effects on the human brain are poorly studied, due to difficulty of tissue access and confounders associated with disease status. Here we examine differences in gene expression and DNA methylation associated with positive antipsychotic drug toxicology status in the human caudate nucleus. We find no genome-wide significant differences in DNA methylation, but abundant differences in gene expression. These gene expression differences are overall quite similar to gene expression differences between schizophrenia cases and controls. Interestingly, gene expression differences based on antipsychotic toxicology are different between brain regions, potentially due to affected cell type differences. We finally assess similarities with effects in a mouse model, which finds some overlapping effects but many differences as well. As a first look at the molecular effects of antipsychotics in the human brain, the lack of epigenetic effects is unexpected, possibly because long term treatment effects may be relatively stable for extended periods.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Esquizofrenia , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Núcleo Caudado , Humanos , Camundongos , Fenótipo , Transtornos Psicóticos/tratamento farmacológico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
9.
Mol Psychiatry ; 26(7): 3536-3547, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33649454

RESUMO

Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with schizophrenia risk. Integration of RNA-sequencing data from postmortem human brains with these risk SNPs identified transcripts associated with increased schizophrenia susceptibility, including a class of exon 9-spliced isoforms of Sorting nexin-19 (SNX19d9) and an isoform of Arsenic methyltransferase (AS3MT) splicing out exons 2 and 3 (AS3MTd2d3). However, the biological function of these transcript variants is unclear. Defining the cell types where these risk transcripts are dominantly expressed is an important step to understand function, in prioritizing specific cell types and/or neural pathways in subsequent studies. To identify the cell type-specific localization of SNX19 and AS3MT in the human dorsolateral prefrontal cortex (DLPFC), we used single-molecule in situ hybridization techniques combined with automated quantification and machine learning approaches to analyze 10 postmortem brains of neurotypical individuals. These analyses revealed that both pan-SNX19 and pan-AS3MT were more highly expressed in neurons than non-neurons in layers II/III and VI of DLPFC. Furthermore, pan-SNX19 was preferentially expressed in glutamatergic neurons, while pan-AS3MT was preferentially expressed in GABAergic neurons. Finally, we utilized duplex BaseScope technology, to delineate the localization of SNX19d9 and AS3MTd2d3 splice variants, revealing consistent trends in spatial gene expression among pan-transcripts and schizophrenia risk-related transcript variants. These findings demonstrate that schizophrenia risk transcripts have distinct localization patterns in the healthy human brains, and suggest that SNX19 transcripts might disrupt the normal function of glutamatergic neurons, while AS3MT may lead to disturbances in the GABAergic system in the pathophysiology of schizophrenia.


Assuntos
Metiltransferases , Esquizofrenia , Nexinas de Classificação/genética , Encéfalo/metabolismo , Córtex Pré-Frontal Dorsolateral , Estudo de Associação Genômica Ampla , Humanos , Hibridização In Situ , Metiltransferases/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética
10.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232351

RESUMO

The presence of proteinopathy, the accumulation of specific proteins as aggregates in neurons, is an emerging aspect of the pathology of schizophrenia and other major mental illnesses. Among the initial proteins implicated in forming such aggregates in these conditions is Trio and F-actin Binding Protein isoform 1 (TRIOBP-1), a ubiquitously expressed protein involved in the stabilization of the actin cytoskeleton. Here we investigate the insolubility of TRIOBP-1, as an indicator of aggregation, in brain samples from 25 schizophrenia patients, 25 major depressive disorder patients and 50 control individuals (anterior cingulate cortex, BA23). Strikingly, insoluble TRIOBP-1 is considerably more prevalent in both of these conditions than in controls, further implicating TRIOBP-1 aggregation in schizophrenia and indicating a role in major depressive disorder. These results were only seen using a high stringency insolubility assay (previously used to study DISC1 and other proteins), but not a lower stringency assay that would be expected to also detect functional, actin-bound TRIOBP-1. Previously, we have also determined that a region of 25 amino acids in the center of this protein is critical for its ability to form aggregates. Here we attempt to refine this further, through the expression of various truncated mutant TRIOBP-1 vectors in neuroblastoma cells and examining their aggregation. In this way, it was possible to narrow down the aggregation-critical region of TRIOBP-1 to just 8 amino acids (333-340 of the 652 amino acid-long TRIOBP-1). Surprisingly our results suggested that a second section of TRIOBP-1 is also capable of independently inducing aggregation: the optionally expressed 59 amino acids at the extreme N-terminus of the protein. As a result, the 597 amino acid long version of TRIOBP-1 (also referred to as "Tara" or "TAP68") has reduced potential to form aggregates. The presence of insoluble TRIOBP-1 in brain samples from patients, combined with insight into the mechanism of aggregation of TRIOBP-1 and generation of an aggregation-resistant mutant TRIOBP-1 that lacks both these regions, will be of significant use in further investigating the mechanism and consequences of TRIOBP-1 aggregation in major mental illness.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Actinas/genética , Actinas/metabolismo , Aminoácidos , Transtorno Depressivo Maior/genética , Humanos , Proteínas dos Microfilamentos/metabolismo , Agregados Proteicos , Isoformas de Proteínas/genética , Esquizofrenia/metabolismo
11.
J Neurosci ; 40(4): 932-941, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31811028

RESUMO

Multiple schizophrenia (SCZ) risk loci may be involved in gene co-regulation mechanisms, and analysis of coexpressed gene networks may help to clarify SCZ molecular basis. We have previously identified a dopamine D2 receptor (DRD2) coexpression module enriched for SCZ risk genes and associated with cognitive and neuroimaging phenotypes of SCZ, as well as with response to treatment with antipsychotics. Here we aimed to identify regulatory factors modulating this coexpression module and their relevance to SCZ. We performed motif enrichment analysis to identify transcription factor (TF) binding sites in human promoters of genes coexpressed with DRD2. Then, we measured transcript levels of a group of these genes in primary mouse cortical neurons in basal conditions and upon overexpression and knockdown of predicted TFs. Finally, we analyzed expression levels of these TFs in dorsolateral prefrontal cortex (DLPFC) of SCZ patients. Our in silico analysis revealed enrichment for NURR1 and ERR1 binding sites. In neuronal cultures, the expression of genes either relevant to SCZ risk (Drd2, Gatad2a, Slc28a1, Cnr1) or indexing coexpression in our module (Btg4, Chit1, Osr1, Gpld1) was significantly modified by gain and loss of Nurr1 and Err1. Postmortem DLPFC expression data analysis showed decreased expression levels of NURR1 and ERR1 in patients with SCZ. For NURR1 such decreased expression is associated with treatment with antipsychotics. Our results show that NURR1 and ERR1 modulate the transcription of DRD2 coexpression partners and support the hypothesis that NURR1 is involved in the response to SCZ treatment.SIGNIFICANCE STATEMENT In the present study, we provide in silico and experimental evidence for a role of the TFs NURR1 and ERR1 in modulating the expression pattern of genes coexpressed with DRD2 in human DLPFC. Notably, genetic variations in these genes is associated with SCZ risk and behavioral and neuroimaging phenotypes of the disease, as well as with response to treatment. Furthermore, this study presents novel findings on a possible interplay between D2 receptor-mediated dopamine signaling involved in treatment with antipsychotics and the transcriptional regulation mechanisms exerted by NURR1. Our results suggest that coexpression and co-regulation mechanisms may help to explain some of the complex biology of genetic associations with SCZ.


Assuntos
Predisposição Genética para Doença , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Receptores de Dopamina D2/genética , Receptores de Estrogênio/genética , Esquizofrenia/genética , Animais , Simulação por Computador , Redes Reguladoras de Genes , Humanos , Camundongos , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Regiões Promotoras Genéticas , Receptor ERRalfa Relacionado ao Estrogênio
12.
Mol Psychiatry ; 25(4): 791-804, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30478419

RESUMO

Schizophrenia polygenic risk is plausibly manifested by complex transcriptional dysregulation in the brain, involving networks of co-expressed and functionally related genes. The main purpose of this study was to identify and prioritize co-expressed gene sets in a hierarchical manner, based on the strength of the relationships with clinical diagnosis and with polygenic risk for schizophrenia. Weighted Gene Co-expression Network Analysis (WGCNA) was applied to RNA-quality-adjusted DLPFC RNA-Seq data from the LIBD Postmortem Human Brain Repository (90 controls, 74 schizophrenia cases; all Caucasians) to construct co-expression networks and detect "modules" of co-expressed genes. After multiple internal and external validation procedures, modules of selected interest were tested for enrichment in biological ontologies, for association with schizophrenia polygenic risk scores (PRSs) and with diagnosis, and also for enrichment in genes within the significant GWAS loci reported by the Psychiatric Genomic Consortium (PGC2). The association between schizophrenia genetic signals and modules of co-expression converged on one module showing not only a significant association with both diagnosis and PRS but also significant overlap with 36 PGC2 loci genes, deemed the strongest candidates for drug targets. This module contained many genes involved in synaptic signaling and neuroplasticity. Fifty-three PGC2 genes were in modules associated only with diagnosis and 59 in modules unrelated to diagnosis or PRS. Our study highlights complex relationships between gene co-expression networks in the brain and clinical state and polygenic risk for SCZ and provides a strategy for using this information in selecting and prioritizing potentially targetable gene sets for therapeutic drug development.


Assuntos
Redes Reguladoras de Genes/genética , Esquizofrenia/genética , Transcriptoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , Encéfalo/metabolismo , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Herança Multifatorial/genética , Córtex Pré-Frontal/metabolismo , População Branca/genética
13.
Mol Psychiatry ; 25(1): 37-47, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31695164

RESUMO

RNA splicing is a key mechanism linking genetic variation with psychiatric disorders. Splicing profiles are particularly diverse in brain and difficult to accurately identify and quantify. We developed a new approach to address this challenge, combining long-range PCR and nanopore sequencing with a novel bioinformatics pipeline. We identify the full-length coding transcripts of CACNA1C in human brain. CACNA1C is a psychiatric risk gene that encodes the voltage-gated calcium channel CaV1.2. We show that CACNA1C's transcript profile is substantially more complex than appreciated, identifying 38 novel exons and 241 novel transcripts. Importantly, many of the novel variants are abundant, and predicted to encode channels with altered function. The splicing profile varies between brain regions, especially in cerebellum. We demonstrate that human transcript diversity (and thereby protein isoform diversity) remains under-characterised, and provide a feasible and cost-effective methodology to address this. A detailed understanding of isoform diversity will be essential for the translation of psychiatric genomic findings into pathophysiological insights and novel psychopharmacological targets.


Assuntos
Processamento Alternativo/genética , Canais de Cálcio Tipo L/genética , Análise de Sequência de DNA/métodos , Encéfalo/metabolismo , Canais de Cálcio Tipo L/metabolismo , Éxons/genética , Humanos , Isoformas de Proteínas/metabolismo , Splicing de RNA/genética , RNA Mensageiro/metabolismo , Fatores de Risco
14.
Mol Psychiatry ; 25(4): 831-843, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30635639

RESUMO

Genome-wide association studies (GWAS) have identified many genomic loci associated with risk for schizophrenia, but unambiguous identification of the relationship between disease-associated variants and specific genes, and in particular their effect on risk conferring transcripts, has proven difficult. To better understand the specific molecular mechanism(s) at the schizophrenia locus in 11q25, we undertook cis expression quantitative trait loci (cis-eQTL) mapping for this 2 megabase genomic region using postmortem human brain samples. To comprehensively assess the effects of genetic risk upon local expression, we evaluated multiple transcript features: genes, exons, and exon-exon junctions in multiple brain regions-dorsolateral prefrontal cortex (DLPFC), hippocampus, and caudate. Genetic risk variants strongly associated with expression of SNX19 transcript features that tag multiple rare classes of SNX19 transcripts, whereas they only weakly affected expression of an exon-exon junction that tags the majority of abundant transcripts. The most prominent class of SNX19 risk-associated transcripts is predicted to be overexpressed, defined by an exon-exon splice junction between exons 8 and 10 (junc8.10) and that is predicted to encode proteins that lack the characteristic nexin C terminal domain. Risk alleles were also associated with either increased or decreased expression of multiple additional classes of transcripts. With RACE, molecular cloning, and long read sequencing, we found a number of novel SNX19 transcripts that further define the set of potential etiological transcripts. We explored epigenetic regulation of SNX19 expression and found that DNA methylation at CpG sites near the primary transcription start site and within exon 2 partially mediate the effects of risk variants on risk-associated expression. ATAC sequencing revealed that some of the most strongly risk-associated SNPs are located within a region of open chromatin, suggesting a nearby regulatory element is involved. These findings indicate a potentially complex molecular etiology, in which risk alleles for schizophrenia generate epigenetic alterations and dysregulation of multiple classes of SNX19 transcripts.


Assuntos
Esquizofrenia/genética , Nexinas de Classificação/genética , Adulto , Alelos , Autopsia , Encéfalo/metabolismo , Cromatina/metabolismo , Mapeamento Cromossômico/métodos , Metilação de DNA , Éxons/genética , Feminino , Expressão Gênica/genética , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Fatores de Risco , Nexinas de Classificação/metabolismo
15.
Mol Psychiatry ; 25(12): 3267-3277, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-30131587

RESUMO

Cigarette smoking during pregnancy is a major public health concern. While there are well-described consequences in early child development, there is very little known about the effects of maternal smoking on human cortical biology during prenatal life. We therefore performed a genome-wide differential gene expression analysis using RNA sequencing (RNA-seq) on prenatal (N = 33; 16 smoking-exposed) as well as adult (N = 207; 57 active smokers) human postmortem prefrontal cortices. Smoking exposure during the prenatal period was directly associated with differential expression of 14 genes; in contrast, during adulthood, despite a much larger sample size, only two genes showed significant differential expression (FDR < 10%). Moreover, 1,315 genes showed significantly different exposure effects between maternal smoking during pregnancy and direct exposure in adulthood (FDR < 10%)-these differences were largely driven by prenatal differences that were enriched for pathways previously implicated in addiction and synaptic function. Furthermore, prenatal and age-dependent differentially expressed genes were enriched for genes implicated in non-syndromic autism spectrum disorder (ASD) and were differentially expressed as a set between patients with ASD and controls in postmortem cortical regions. These results underscore the enhanced sensitivity to the biological effect of smoking exposure in the developing brain and offer insight into how maternal smoking during pregnancy affects gene expression in the prenatal human cortex. They also begin to address the relationship between in utero exposure to smoking and the heightened risks for the subsequent development of neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Adulto , Encéfalo , Feminino , Humanos , Exposição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Análise de Sequência de RNA , Fumar/efeitos adversos , Fumar/genética , Transcriptoma/genética
16.
Proc Natl Acad Sci U S A ; 114(27): 7130-7135, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28634288

RESUMO

RNA sequencing (RNA-seq) is a powerful approach for measuring gene expression levels in cells and tissues, but it relies on high-quality RNA. We demonstrate here that statistical adjustment using existing quality measures largely fails to remove the effects of RNA degradation when RNA quality associates with the outcome of interest. Using RNA-seq data from molecular degradation experiments of human primary tissues, we introduce a method-quality surrogate variable analysis (qSVA)-as a framework for estimating and removing the confounding effect of RNA quality in differential expression analysis. We show that this approach results in greatly improved replication rates (>3×) across two large independent postmortem human brain studies of schizophrenia and also removes potential RNA quality biases in earlier published work that compared expression levels of different brain regions and other diagnostic groups. Our approach can therefore improve the interpretation of differential expression analysis of transcriptomic data from human tissue.


Assuntos
RNA/análise , Análise de Sequência de RNA/métodos , Algoritmos , Animais , Biologia Computacional , Replicação do DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genótipo , Substância Cinzenta , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , RNA/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transcriptoma
17.
Acta Neuropathol ; 137(4): 557-569, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30712078

RESUMO

Late-onset Alzheimer's disease (AD) is a complex age-related neurodegenerative disorder that likely involves epigenetic factors. To better understand the epigenetic state associated with AD, we surveyed 420,852 DNA methylation (DNAm) sites from neurotypical controls (N = 49) and late-onset AD patients (N = 24) across four brain regions (hippocampus, entorhinal cortex, dorsolateral prefrontal cortex and cerebellum). We identified 858 sites with robust differential methylation collectively annotated to 772 possible genes (FDR < 5%, within 10 kb). These sites were overrepresented in AD genetic risk loci (p = 0.00655) and were enriched for changes during normal aging (p < 2.2 × 10-16), and nearby genes were enriched for processes related to cell-adhesion, immunity, and calcium homeostasis (FDR < 5%). To functionally validate these associations, we generated and analyzed corresponding transcriptome data to prioritize 130 genes within 10 kb of the differentially methylated sites. These 130 genes were differentially expressed between AD cases and controls and their expression was associated with nearby DNAm (p < 0.05). This integrated analysis implicates novel genes in Alzheimer's disease, such as ANKRD30B. These results highlight DNAm differences in Alzheimer's disease that have gene expression correlates, further implicating DNAm as an epigenetic mechanism underlying pathological molecular changes associated with AD. Furthermore, our framework illustrates the value of integrating epigenetic and transcriptomic data for understanding complex disease.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Metilação de DNA , Perfilação da Expressão Gênica , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Ilhas de CpG/genética , Bases de Dados Genéticas , Epigenômica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
PLoS Genet ; 12(2): e1005819, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26913521

RESUMO

Differentiating pluripotent cells from fibroblast progenitors is a potentially transformative tool in personalized medicine. We previously identified relatively greater success culturing dura-derived fibroblasts than scalp-derived fibroblasts from postmortem tissue. We hypothesized that these differences in culture success were related to epigenetic differences between the cultured fibroblasts by sampling location, and therefore generated genome-wide DNA methylation and transcriptome data on 11 intrinsically matched pairs of dural and scalp fibroblasts from donors across the lifespan (infant to 85 years). While these cultured fibroblasts were several generations removed from the primary tissue and morphologically indistinguishable, we found widespread epigenetic differences by sampling location at the single CpG (N = 101,989), region (N = 697), "block" (N = 243), and global spatial scales suggesting a strong epigenetic memory of original fibroblast location. Furthermore, many of these epigenetic differences manifested in the transcriptome, particularly at the region-level. We further identified 7,265 CpGs and 11 regions showing significant epigenetic memory related to the age of the donor, as well as an overall increased epigenetic variability, preferentially in scalp-derived fibroblasts-83% of loci were more variable in scalp, hypothesized to result from cumulative exposure to environmental stimuli in the primary tissue. By integrating publicly available DNA methylation datasets on individual cell populations in blood and brain, we identified significantly increased inter-individual variability in our scalp- and other skin-derived fibroblasts on a similar scale as epigenetic differences between different lineages of blood cells. Lastly, these epigenetic differences did not appear to be driven by somatic mutation--while we identified 64 probable de-novo variants across the 11 subjects, there was no association between mutation burden and age of the donor (p = 0.71). These results depict a strong component of epigenetic memory in cell culture from primary tissue, even after several generations of daughter cells, related to cell state and donor age.


Assuntos
Epigênese Genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Criança , Pré-Escolar , Ilhas de CpG , Metilação de DNA , Humanos , Lactente , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Couro Cabeludo/citologia , Transcriptoma , Adulto Jovem
19.
J Neurosci Res ; 96(1): 16-20, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28609565

RESUMO

A postmortem human brain collection to study posttraumatic stress disorder (PTSD) is critical for uncovering the molecular mechanisms that contribute to this psychiatric disorder. We describe here the PTSD brain collection at the Lieber Institute for Brain Development in Baltimore, Maryland, consisting of postmortem brain donations acquired between 2012 and 2017. Thus far, 87 brains from individuals meeting DSM-5 criteria for PTSD were collected after consent was obtained from legal next-of-kin, and subsequently clinically characterized for molecular studies. PTSD brain donors had high rates of comorbid diagnoses, including depression (62.1%), substance abuse (74.7%), drug-related death (69.0%), and suicide completion (17.2%). PTSD cases were subdivided into two categories: combat-related PTSD (n = 24) and noncombat/domestic PTSD (n = 63). The major differences between the combat-related and domestic PTSD cohorts were sex, drug-related death, and the prevalence of bipolar disorder (BPD) comorbidity. The combat-related group was entirely male, with only one BPD subject (4.2%), and had significantly fewer drug-related deaths (45.8%) in contrast to the domestic group (31.8% male, 36.5% bipolar, and 77.8% drug-related deaths). Medical examiners' offices, particularly in areas with higher military populations, are an excellent source for PTSD brain donations of both combat-related and domestic PTSD.


Assuntos
Encéfalo/patologia , Manejo de Espécimes/normas , Transtornos de Estresse Pós-Traumáticos/patologia , Obtenção de Tecidos e Órgãos/normas , Adulto , Médicos Legistas/normas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Manejo de Espécimes/métodos , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Pós-Traumáticos/psicologia , Obtenção de Tecidos e Órgãos/métodos
20.
J Neurosci Res ; 96(1): 21-30, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27775175

RESUMO

Posttraumatic stress disorder (PTSD) follows exposure to a traumatic event in susceptible individuals. Recently, genome-wide association studies have identified a number of genetic sequence variants that are associated with the risk of developing PTSD. To follow up on identifying the molecular mechanisms of these risk variants, we performed genotype to RNA sequencing-derived quantitative expression (whole gene, exon, and exon junction levels) analysis in the dorsolateral prefrontal cortex (DLPFC) of normal postmortem human brains. We further investigated genotype-gene expression associations within the amygdala in a smaller independent RNA sequencing (Genotype-Tissue Expression [GTEx]) dataset. Our DLPFC analyses identified significant expression quantitative trait loci (eQTL) associations for a "candidate" PTSD risk SNP rs363276 and the expression of two genes: SLC18A2 and PDZD8, where the PTSD risk/minor allele T was associated with significantly lower levels of gene expression for both genes, in the DLPFC. These eQTL associations were independently confirmed in the amygdala from the GTEx database. Rs363276 "T" carriers also showed significantly increased activity in the amygdala during an emotional face-matching task in healthy volunteers. Taken together, our preliminary findings in normal human brains represent a tractable approach to identify mechanisms by which genetic variants potentially increase an individual's risk for developing PTSD. © 2016 Wiley Periodicals, Inc.


Assuntos
Encéfalo/patologia , Predisposição Genética para Doença/genética , Variação Genética/genética , Locos de Características Quantitativas/genética , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/patologia , Adulto , Idoso , Metilação de DNA/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA