Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Anal Chem ; 92(9): 6667-6675, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32267675

RESUMO

Efforts to eradicate Plasmodium vivax malaria are hampered by the presence of hypnozoites, persisting stages in the liver that can reactivate after prolonged periods of time enabling further transmission and causing renewed disease. Large-scale drug screening is needed to identify compounds with antihypnozoite activity, but current platforms rely on time-consuming high-content fluorescence imaging as read-out, limiting assay throughput. We here report an ultrafast and sensitive dual-luciferase-based method to differentiate hypnozoites from liver stage schizonts using a transgenic P. cynomolgi parasite line that contains Nanoluc driven by the constitutive hsp70 promoter, as well as firefly luciferase driven by the schizont-specific lisp2 promoter. The transgenic parasite line showed similar fitness and drug sensitivity profiles of selected compounds to wild type. We demonstrate robust bioluminescence-based detection of hypnozoites in 96-well and 384-well plate formats, setting the stage for implementation in large scale drug screens.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Luciferases/metabolismo , Malária/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Animais , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Hepatócitos/parasitologia , Medições Luminescentes , Macaca mulatta , Malária/diagnóstico por imagem , Imagem Óptica , Testes de Sensibilidade Parasitária
4.
PLoS Pathog ; 12(11): e1005917, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27851824

RESUMO

Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC). P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC) and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP) we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START) domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host) phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites.


Assuntos
Hepatócitos/virologia , Malária Falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Modelos Animais de Doenças , Eritrócitos/parasitologia , Imunofluorescência , Humanos , Fígado , Malária Falciparum/virologia , Camundongos , Família Multigênica , Organismos Geneticamente Modificados , Filogenia , Plasmodium falciparum , Transporte Proteico , Vacúolos/virologia
5.
Mol Microbiol ; 101(1): 78-91, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26991313

RESUMO

Multidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of malaria parasites. Four P. berghei genes (encoding MDR1, 4, 6 and 7) were refractory to deletion, indicating a vital role during blood stage multiplication and validating them as potential targets for antimalarial drugs. Mutants lacking expression of MDR2, MDR3 and MDR5 were generated in both P. berghei and P. falciparum, indicating a dispensable role for blood stage development. Whereas P. berghei mutants lacking MDR3 and MDR5 had a reduced blood stage multiplication in vivo, blood stage growth of P. falciparum mutants in vitro was not significantly different. Oocyst maturation and sporozoite formation in Plasmodium mutants lacking MDR2 or MDR5 was reduced. Sporozoites of these P. berghei mutants were capable of infecting mice and life cycle completion, indicating the absence of vital roles during liver stage development. Our results demonstrate vital and dispensable roles of MDR proteins during blood stages and an important function in sporogony for MDR2 and MDR5 in both Plasmodium species.


Assuntos
Culicidae/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Animais , Antimaláricos/farmacologia , Resistência a Múltiplos Medicamentos , Feminino , Estágios do Ciclo de Vida , Malária/parasitologia , Malária Falciparum/parasitologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Oócitos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Esporozoítos/metabolismo
6.
FASEB J ; 28(5): 2158-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24509910

RESUMO

The 10 Plasmodium 6-Cys proteins have critical roles throughout parasite development and are targets for antimalaria vaccination strategies. We analyzed the conserved 6-cysteine domain of this family and show that only the last 4 positionally conserved cysteine residues are diagnostic for this domain and identified 4 additional "6-Cys family-related" proteins. Two of these, sequestrin and B9, are critical to Plasmodium liver-stage development. RT-PCR and immunofluorescence assays show that B9 is translationally repressed in sporozoites and is expressed after hepatocyte invasion where it localizes to the parasite plasma membrane. Mutants lacking B9 expression in the rodent malaria parasites P. berghei and P. yoelii and the human parasite P. falciparum developmentally arrest in hepatocytes. P. berghei mutants arrest in the livers of BALB/c (100%) and C57BL6 mice (>99.9%), and in cultures of Huh7 human-hepatoma cell line. Similarly, P. falciparum mutants while fully infectious to primary human hepatocytes abort development 3 d after infection. This growth arrest is associated with a compromised parasitophorous vacuole membrane a phenotype similar to, but distinct from, mutants lacking the 6-Cys sporozoite proteins P52 and P36. Our results show that 6-Cys proteins have critical but distinct roles in establishment and maintenance of a parasitophorous vacuole and subsequent liver-stage development.


Assuntos
Regulação da Expressão Gênica , Hepatócitos/parasitologia , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Linhagem Celular , Biologia Computacional , Cisteína/metabolismo , Feminino , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Malária/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium yoelii/metabolismo , Biossíntese de Proteínas , Esporozoítos/crescimento & desenvolvimento
7.
Mol Cell Proteomics ; 12(2): 426-48, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23197789

RESUMO

Malaria parasites actively remodel the infected red blood cell (irbc) by exporting proteins into the host cell cytoplasm. The human parasite Plasmodium falciparum exports particularly large numbers of proteins, including proteins that establish a vesicular network allowing the trafficking of proteins onto the surface of irbcs that are responsible for tissue sequestration. Like P. falciparum, the rodent parasite P. berghei ANKA sequesters via irbc interactions with the host receptor CD36. We have applied proteomic, genomic, and reverse-genetic approaches to identify P. berghei proteins potentially involved in the transport of proteins to the irbc surface. A comparative proteomics analysis of P. berghei non-sequestering and sequestering parasites was used to determine changes in the irbc membrane associated with sequestration. Subsequent tagging experiments identified 13 proteins (Plasmodium export element (PEXEL)-positive as well as PEXEL-negative) that are exported into the irbc cytoplasm and have distinct localization patterns: a dispersed and/or patchy distribution, a punctate vesicle-like pattern in the cytoplasm, or a distinct location at the irbc membrane. Members of the PEXEL-negative BIR and PEXEL-positive Pb-fam-3 show a dispersed localization in the irbc cytoplasm, but not at the irbc surface. Two of the identified exported proteins are transported to the irbc membrane and were named erythrocyte membrane associated proteins. EMAP1 is a member of the PEXEL-negative Pb-fam-1 family, and EMAP2 is a PEXEL-positive protein encoded by a single copy gene; neither protein plays a direct role in sequestration. Our observations clearly indicate that P. berghei traffics a diverse range of proteins to different cellular locations via mechanisms that are analogous to those employed by P. falciparum. This information can be exploited to generate transgenic humanized rodent P. berghei parasites expressing chimeric P. berghei/P. falciparum proteins on the surface of rodent irbc, thereby opening new avenues for in vivo screening adjunct therapies that block sequestration.


Assuntos
Malária/metabolismo , Plasmodium berghei/genética , Proteoma/genética , Proteínas de Protozoários/genética , Esquizontes/metabolismo , Trofozoítos/metabolismo , Animais , Antígenos CD36/química , Antígenos CD36/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Feminino , Genes Reporter , Proteínas de Fluorescência Verde , Interações Hospedeiro-Parasita , Luciferases , Malária/parasitologia , Camundongos , Mutação , Plasmodium berghei/química , Plasmodium berghei/metabolismo , Transporte Proteico , Proteoma/química , Proteoma/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Esquizontes/química , Espectrometria de Massas em Tandem , Transfecção , Trofozoítos/química
8.
PLoS Pathog ; 8(2): e1002554, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22383885

RESUMO

Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis.


Assuntos
Proteínas de Ciclo Celular/genética , Gametogênese/genética , Plasmodium malariae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Proteínas Cdc20 , Proteínas Cdh1 , Genes de Protozoários/fisiologia , Células Germinativas/metabolismo , Células Germinativas/fisiologia , Cinetocoros/metabolismo , Cinetocoros/fisiologia , Malária/parasitologia , Masculino , Camundongos , Dados de Sequência Molecular , Organismos Geneticamente Modificados , Filogenia , Plasmodium malariae/crescimento & desenvolvimento , Plasmodium malariae/metabolismo , Plasmodium malariae/fisiologia , Homologia de Sequência
9.
NPJ Vaccines ; 7(1): 126, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302860

RESUMO

Vaccine development for Plasmodium vivax, an important human relapsing malaria, is lagging behind. In the case of the most deadly human malaria P. falciparum, unprecedented high levels of protection have been obtained by immunization with live sporozoites under accompanying chemoprophylaxis, which prevents the onset of blood-stage malaria. Such an approach has not been fully evaluated for relapsing malaria. Here, in the P. cynomolgi-rhesus macaque model for relapsing malaria, we employ the parasites' natural relapsing phenotype to self-boost the immune response against liver-stage parasites, following a single-shot high-dose live sporozoite vaccination. This approach resulted in sterile protection against homologous sporozoite challenge in three out of four animals in the group that was also exposed for several days to blood stages during primary infection and relapses. One out of four animals in the group that received continuous chemoprophylaxis to abort blood-stage exposure was also protected from sporozoite challenge. Although obtained in a small number of animals as part of a Proof-of-Concept study, these results suggest that limited blood-stage parasite exposure may augment protection in this model. We anticipate our data are a starting point for further research into correlates of protection and extrapolation of the single-shot approach to develop efficacious malaria vaccines against relapsing human malaria.

10.
BMC Genomics ; 12: 155, 2011 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-21418605

RESUMO

BACKGROUND: The genome of a number of species of malaria parasites (Plasmodium spp.) has been sequenced in the hope of identifying new drug and vaccine targets. However, almost one-half of predicted Plasmodium genes are annotated as hypothetical and are difficult to analyse in bulk due to the inefficiency of current reverse genetic methodologies for Plasmodium. Recently, it has been shown that the transposase piggyBac integrates at random into the genome of the human malaria parasite P. falciparum offering the possibility to develop forward genetic screens to analyse Plasmodium gene function. This study reports the development and application of the piggyBac transposition system for the rodent malaria parasite P. berghei and the evaluation of its potential as a tool in forward genetic studies. P. berghei is the most frequently used malaria parasite model in gene function analysis since phenotype screens throughout the complete Plasmodium life cycle are possible both in vitro and in vivo. RESULTS: We demonstrate that piggyBac based gene inactivation and promoter-trapping is both easier and more efficient in P. berghei than in the human malaria parasite, P. falciparum. Random piggyBac-mediated insertion into genes was achieved after parasites were transfected with the piggyBac donor plasmid either when transposase was expressed either from a helper plasmid or a stably integrated gene in the genome. Characterization of more than 120 insertion sites demonstrated that more than 70 most likely affect gene expression classifying their protein products as non-essential for asexual blood stage development. The non-essential nature of two of these genes was confirmed by targeted gene deletion one of which encodes P41, an ortholog of a human malaria vaccine candidate. Importantly for future development of whole genome phenotypic screens the remobilization of the piggyBac element in parasites that stably express transposase was demonstrated. CONCLUSION: These data demonstrate that piggyBac behaved as an efficient and random transposon in P. berghei. Remobilization of piggyBac element shows that with further development the piggyBac system can be an effective tool to generate random genome-wide mutation parasite libraries, for use in large-scale phenotype screens in vitro and in vivo.


Assuntos
Elementos de DNA Transponíveis , Genômica/métodos , Mutagênese Insercional , Plasmodium berghei/genética , Perfilação da Expressão Gênica , Genes de Protozoários , Plasmídeos , Regiões Promotoras Genéticas , RNA de Protozoário/genética , Análise de Sequência de DNA , Transfecção , Transposases/genética
11.
Exp Hematol ; 82: 8-23, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32007479

RESUMO

Establishing an in vitro "red blood cell matrix" that would allow uninterrupted access to a stable, homogeneous reticulocyte population would facilitate the establishment of continuous, long-term in vitro Plasmodium vivax blood stage cultures. In this study, we have explored the suitability of the erythroleukemia K562 cell line as a continuous source of such reticulocytes and have investigated regulatory factors behind the terminal differentiation (and enucleation, in particular) of this cell line that can be used to drive the reticulocyte production process. The Duffy blood group antigen receptor (Fy), essential for P. vivax invasion, was stably introduced into K562 cells by lentiviral gene transfer. miRNA-26a-5p and miRNA-30a-5p were downregulated to promote erythroid differentiation and enucleation, resulting in a tenfold increase in the production of reticulocytes after stimulation with an induction cocktail compared with controls. Our results suggest an interplay in the mechanisms of action of miRNA-26a-5p and miRNA-30a-5p, which makes it necessary to downregulate both miRNAs to achieve a stable enucleation rate and Fy receptor expression. In the context of establishing P. vivax-permissive, stable, and reproducible reticulocytes, a higher enucleation rate may be desirable, which may be achieved by the targeting of further regulatory mechanisms in Fy-K562 cells; promoting the shift in hemoglobin production from fetal to adult may also be necessary. Despite the fact that K562 erythroleukemia cell lines are of neoplastic origin, this cell line offers a versatile model system to research the regulatory mechanisms underlying erythropoiesis.


Assuntos
Leucemia Eritroblástica Aguda , Plasmodium vivax/crescimento & desenvolvimento , Reticulócitos , Diferenciação Celular , Sistema do Grupo Sanguíneo Duffy/biossíntese , Sistema do Grupo Sanguíneo Duffy/genética , Regulação Leucêmica da Expressão Gênica , Humanos , Células K562 , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/parasitologia , Leucemia Eritroblástica Aguda/patologia , MicroRNAs/biossíntese , MicroRNAs/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , Reticulócitos/metabolismo , Reticulócitos/parasitologia , Reticulócitos/patologia
12.
Commun Biol ; 3: 7, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31909199

RESUMO

Plasmodium vivax malaria is characterized by repeated episodes of blood stage infection (relapses) resulting from activation of dormant stages in the liver, so-called hypnozoites. Transition of hypnozoites into developing schizonts has never been observed. A barrier for studying this has been the lack of a system in which to monitor growth of liver stages. Here, exploiting the unique strengths of the simian hypnozoite model P. cynomolgi, we have developed green-fluorescent (GFP) hypnozoites that turn on red-fluorescent (mCherry) upon activation. The transgenic parasites show full liver stage development, including merozoite release and red blood cell infection. We demonstrate that individual hypnozoites actually can activate and resume development after prolonged culture, providing the last missing evidence of the hypnozoite theory of relapse. The few events identified indicate that hypnozoite activation in vitro is infrequent. This system will further our understanding of the mechanisms of hypnozoite activation and may facilitate drug discovery approaches.


Assuntos
Genes Reporter , Malária/parasitologia , Plasmodium cynomolgi/fisiologia , Reinfecção/parasitologia , Proteínas de Fluorescência Verde/genética , Fígado/parasitologia , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/fisiologia , Plasmodium cynomolgi/genética
13.
Methods Mol Biol ; 923: 353-68, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22990791

RESUMO

We describe a technology for imaging the sequestration of infected red blood cells (iRBC) of the rodent malaria parasite Plasmodium berghei both in the bodies of live mice and in dissected organs, using a transgenic parasite that expresses luciferase. Real-time imaging of sequestered iRBC is performed by measuring bioluminescence produced by the enzymatic reaction in parasites between the luciferase enzyme and its substrate luciferin injected into the mice several minutes prior to imaging. The bioluminescence signal is detected by a sensitive I-CCD photon-counting video camera. Using a reporter parasite that expresses luciferase under the control of a schizont-specific promoter (i.e., the ama-1 promoter), the schizont stage is made visible when detecting bioluminescence signals. Schizont sequestration is imaged during short-term infections with parasites that are synchronized in development or during ongoing infections. Real-time in vivo imaging of iRBC will provide increased insights into the dynamics of sequestration and its role in pathology, and can be used to evaluate strategies that prevent sequestration.


Assuntos
Eritrócitos/parasitologia , Medições Luminescentes/métodos , Plasmodium berghei/citologia , Plasmodium berghei/crescimento & desenvolvimento , Esquizontes/citologia , Animais , Genes Reporter , Medições Luminescentes/instrumentação , Malária/parasitologia , Camundongos
14.
J Exp Med ; 209(1): 93-107, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22184632

RESUMO

Adherence of parasite-infected red blood cells (irbc) to the vascular endothelium of organs plays a key role in the pathogenesis of Plasmodium falciparum malaria. The prevailing hypothesis of why irbc adhere and sequester in tissues is that this acts as a mechanism of avoiding spleen-mediated clearance. Irbc of the rodent parasite Plasmodium berghei ANKA sequester in a fashion analogous to P. falciparum by adhering to the host receptor CD36. To experimentally determine the significance of sequestration for parasite growth, we generated a mutant P. berghei ANKA parasite with a reduced CD36-mediated adherence. Although the cognate parasite ligand binding to CD36 is unknown, we show that nonsequestering parasites have reduced growth and we provide evidence that in addition to avoiding spleen removal, other factors related to CD36-mediated sequestration are beneficial for parasite growth. These results reveal for the first time the importance of sequestration to a malaria infection, with implications for the development of strategies aimed at reducing pathology by inhibiting tissue sequestration.


Assuntos
Antígenos CD36/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Malária/metabolismo , Malária/parasitologia , Plasmodium berghei/metabolismo , Animais , Antígenos CD36/genética , Adesão Celular/genética , Ciclo Celular/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Transporte Proteico , Proteômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Ratos , Ratos Wistar , Esquizontes/metabolismo , Esplenectomia
15.
PLoS One ; 6(12): e29289, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22216235

RESUMO

Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel 'gene insertion/marker out' (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research.


Assuntos
Teste de Complementação Genética , Plasmodium/genética , Roedores/parasitologia , Transgenes , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA