RESUMO
A body of data supports the existence of core (α2-α5) dimers of BAK and BAX in the oligomeric, membrane-perturbing conformation of these essential apoptotic effector molecules. Molecular structures for these dimers have only been captured for truncated constructs encompassing the core domain alone. Here, we report a crystal structure of BAK α2-α8 dimers (i.e., minus its flexible N-terminal helix and membrane-anchoring C-terminal segment) that has been obtained through the activation of monomeric BAK with the detergent C12E8. Core dimers are evident, linked through the crystal by contacts via latch (α6-α8) domains. This crystal structure shows activated BAK dimers with the extended latch domain present. Our data provide direct evidence for the conformational change converting BAK from inert monomer to the functional dimer that destroys mitochondrial integrity. This dimer is the smallest functional unit for recombinant BAK or BAX described so far.
Assuntos
Detergentes/química , Multimerização Proteica , Proteína Killer-Antagonista Homóloga a bcl-2/química , Sequência de Aminoácidos , Animais , Lipossomos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Estrutura Secundária de Proteína , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismoRESUMO
In stressed cells, apoptosis ensues when Bcl-2 family members Bax or Bak oligomerize and permeabilize the mitochondrial outer membrane. Certain BH3-only relatives can directly activate them to mediate this pivotal, poorly understood step. To clarify the conformational changes that induce Bax oligomerization, we determined crystal structures of BaxΔC21 treated with detergents and BH3 peptides. The peptides bound the Bax canonical surface groove but, unlike their complexes with prosurvival relatives, dissociated Bax into two domains. The structures define the sequence signature of activator BH3 domains and reveal how they can activate Bax via its groove by favoring release of its BH3 domain. Furthermore, Bax helices α2-α5 alone adopted a symmetric homodimer structure, supporting the proposal that two Bax molecules insert their BH3 domain into each other's surface groove to nucleate oligomerization. A planar lipophilic surface on this homodimer may engage the membrane. Our results thus define critical Bax transitions toward apoptosis.
Assuntos
Apoptose , Cristalografia por Raios X , Proteína X Associada a bcl-2/química , Sequência de Aminoácidos , Animais , Citocromos c/metabolismo , Dimerização , Embrião de Mamíferos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/metabolismo , Fígado/metabolismo , Camundongos , Mitocôndrias/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Proteína X Associada a bcl-2/metabolismoRESUMO
The intrinsic apoptosis pathway, regulated by the BCL-2 protein family, is essential for embryonic development. Using mice lacking all known apoptosis effectors, BAX, BAK and BOK, we have previously defined the processes during development that require apoptosis. Rare Bok-/- Bax-/- Bak-/- triple knockout (TKO) mice developed to adulthood and several tissues that were thought to require apoptosis during development appeared normal. This raises the question if all apoptosis had been abolished in the TKO mice or if other BCL-2 family members could act as effectors of apoptosis. Here, we investigated the role of BID, generally considered to link the extrinsic and intrinsic apoptosis pathways, acting as a BH3-only protein initiating apoptosis upstream of BAX and BAK. We found that Bok-/- Bax-/- Bak-/- Bid-/- quadruple knockout (QKO) mice have additional developmental anomalies compared to TKO mice, consistent with a role of BID, not only upstream but also in parallel to BAX, BAK and BOK. Mitochondrial experiments identified a small cytochrome c-releasing activity of full-length BID. Collectively, these findings suggest a new effector role for BID in the intrinsic apoptosis pathway.
Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína Killer-Antagonista Homóloga a bcl-2 , Animais , Camundongos , Apoptose , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Desenvolvimento Embrionário/genética , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
Due to the myriad interactions between prosurvival and proapoptotic members of the Bcl-2 family of proteins, establishing the mechanisms that regulate the intrinsic apoptotic pathway has proven challenging. Mechanistic insights have primarily been gleaned from in vitro studies because genetic approaches in mammals that produce unambiguous data are difficult to design. Here we describe a mutation in mouse and human Bak that specifically disrupts its interaction with the prosurvival protein Bcl-xL Substitution of Glu75 in mBak (hBAK Q77) for leucine does not affect the three-dimensional structure of Bak or killing activity but reduces its affinity for Bcl-xL via loss of a single hydrogen bond. Using this mutant, we investigated the requirement for physical restraint of Bak by Bcl-xL in apoptotic regulation. In vitro, Bak(Q75L) cells were significantly more sensitive to various apoptotic stimuli. In vivo, loss of Bcl-xL binding to Bak led to significant defects in T-cell and blood platelet survival. Thus, we provide the first definitive in vivo evidence that prosurvival proteins maintain cellular viability by interacting with and inhibiting Bak.
Assuntos
Apoptose/genética , Plaquetas/citologia , Linfócitos T/citologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Linhagem Celular , Sobrevivência Celular/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genéticaRESUMO
Selective targeting of BCL-2 with the BH3-mimetic venetoclax has been a transformative treatment for patients with various leukemias. TP-53 controls apoptosis upstream of where BCL-2 and its prosurvival relatives, such as MCL-1, act. Therefore, targeting these prosurvival proteins could trigger apoptosis across diverse blood cancers, irrespective of TP53 mutation status. Indeed, targeting BCL-2 has produced clinically relevant responses in blood cancers with aberrant TP-53. However, in our study, TP53-mutated or -deficient myeloid and lymphoid leukemias outcompeted isogenic controls with intact TP-53, unless sufficient concentrations of BH3-mimetics targeting BCL-2 or MCL-1 were applied. Strikingly, tumor cells with TP-53 dysfunction escaped and thrived over time if inhibition of BCL-2 or MCL-1 was sublethal, in part because of an increased threshold for BAX/BAK activation in these cells. Our study revealed the key role of TP-53 in shaping long-term responses to BH3-mimetic drugs and reconciled the disparate pattern of initial clinical response to venetoclax, followed by subsequent treatment failure among patients with TP53-mutant chronic lymphocytic leukemia or acute myeloid leukemia. In contrast to BH3-mimetics targeting just BCL-2 or MCL-1 at doses that are individually sublethal, a combined BH3-mimetic approach targeting both prosurvival proteins enhanced lethality and durably suppressed the leukemia burden, regardless of TP53 mutation status. Our findings highlight the importance of using sufficiently lethal treatment strategies to maximize outcomes of patients with TP53-mutant disease. In addition, our findings caution against use of sublethal BH3-mimetic drug regimens that may enhance the risk of disease progression driven by emergent TP53-mutant clones.
Assuntos
Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Indolizinas/farmacologia , Isoquinolinas/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Morfolinas/farmacologia , Proteínas de Neoplasias/fisiologia , Fragmentos de Peptídeos/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Sulfonamidas/farmacologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Dano ao DNA , Genes p53 , Humanos , Indolizinas/uso terapêutico , Subunidade alfa de Receptor de Interleucina-2/deficiência , Isoquinolinas/uso terapêutico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Morfolinas/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/administração & dosagem , Sulfonamidas/uso terapêutico , Proteína Supressora de Tumor p53/deficiência , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Apoptotic stimuli activate and oligomerize the proapoptotic proteins Bak and Bax, resulting in mitochondrial outer-membrane permeabilization and subsequent cell death. This activation can occur when certain BH3-only proteins interact directly with Bak and Bax. Recently published crystal structures reveal that Bax separates into core and latch domains in response to BH3 peptides. The distinguishing characteristics of BH3 peptides capable of directly activating Bax were also elucidated. Here we identify specific BH3 peptides capable of "unlatching" Bak and describe structural insights into Bak activation and oligomerization. Crystal structures and crosslinking experiments demonstrate that Bak undergoes a conformational change similar to that of Bax upon activation. A structure of the Bak core domain dimer provides a high-resolution image of this key intermediate in the pore-forming oligomer. Our results confirm an analogous mechanism for activation and dimerization of Bak and Bax in response to certain BH3 peptides.
Assuntos
Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/química , Animais , Cristalografia , Cisteína/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína X Associada a bcl-2/metabolismoRESUMO
BAK and BAX are the essential effectors of apoptosis because without them a cell is resistant to most apoptotic stimuli. BAK and BAX undergo conformation changes to homooligomerize then permeabilize the mitochondrial outer membrane during apoptosis. How BCL-2 homology 3 (BH3)-only proteins bind to activate BAK and BAX is unclear. We report that BH3-only proteins bind inactive full-length BAK at mitochondria and then dissociate following exposure of the BAK BH3 and BH4 domains before BAK homodimerization. Using a functional obstructive labeling approach, we show that activation of BAK involves important interactions of BH3-only proteins with both the canonical hydrophobic binding groove (α2-5) and α6 at the rear of BAK, with interaction at α6 promoting an open groove to receive a BH3-only protein. Once activated, how BAK homodimers multimerize to form the putative apoptotic pore is unknown. Obstructive labeling of BAK beyond the BH3 domain and hydrophobic groove did not inhibit multimerization and mitochondrial damage, indicating that critical protein-protein interfaces in BAK self-association are limited to the α2-5 homodimerization domain.
Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Animais , Apoptose , Sítios de Ligação , Linhagem Celular , Citocromos c/metabolismo , Dissulfetos/química , Epitopos/química , Fibroblastos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteína X Associada a bcl-2/metabolismoRESUMO
A pivotal step toward apoptosis is oligomerization of the Bcl-2 relative Bak. We recently reported that its oligomerization initiates by insertion of an exposed BH3 domain into the groove of another Bak monomer. We now report that the resulting BH3:groove dimers can be converted to the larger oligomers that permeabilize mitochondria by an interface between alpha6 helices. Cysteine residues placed in alpha6 could be crosslinked only after apoptotic signaling. Cysteines placed at both interfaces established that the BH3:groove dimer is symmetric and that the alpha6:alpha6 interface can link these dimers into homo-oligomers containing at least 18 Bak molecules. A putative zinc-binding site in alpha6 was not required to form the alpha6:alpha6 interface, and its mutation in full-length Bak did not affect Bak conformation, oligomerization, or function. We conclude that alpha6:alpha6 interaction occurs during Bak oligomerization and proapoptotic function, but we find no evidence that zinc binding to that interface regulates apoptosis.
Assuntos
Apoptose , Multimerização Proteica , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Animais , Sítios de Ligação , Citocromos c/metabolismo , Camundongos , Estrutura Secundária de Proteína , Deleção de Sequência , Transdução de Sinais , Relação Estrutura-Atividade , Zinco/metabolismoRESUMO
The pivotal step on the mitochondrial pathway to apoptosis is permeabilization of the mitochondrial outer membrane (MOM) by oligomers of the B-cell lymphoma-2 (Bcl-2) family members Bak or Bax. However, how they disrupt MOM integrity is unknown. A longstanding model is that activated Bak and Bax insert two α-helices, α5 and α6, as a hairpin across the MOM, but recent insights on the oligomer structures question this model. We have clarified how these helices contribute to MOM perforation by determining that, in the oligomers, Bak α5 (like Bax α5) remains part of the protein core and that a membrane-impermeable cysteine reagent can label cysteines placed at many positions in α5 and α6 of both Bak and Bax. The results are inconsistent with the hairpin insertion model but support an in-plane model in which α5 and α6 collapse onto the membrane and insert shallowly to drive formation of proteolipidic pores.
Assuntos
Apoptose/fisiologia , Membranas Mitocondriais/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Cisteína/química , Humanos , Camundongos , Membranas Mitocondriais/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estilbenos , Reagentes de Sulfidrila , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genéticaRESUMO
The Bcl-2 relative Bak is thought to drive apoptosis by forming homo-oligomers that permeabilize mitochondria, but how it is activated and oligomerizes is unclear. To clarify these pivotal steps toward apoptosis, we have characterized multiple random loss-of-function Bak mutants and explored the mechanism of Bak conformation change during apoptosis. Single missense mutations located to the alpha helix 2-5 region of Bak, with most altering the BH3 domain or hydrophobic groove (BH1 domain). Loss of function invariably corresponded to impaired ability to oligomerize. An essential early step in Bak activation was shown to be exposure of the BH3 domain, which became reburied in dimers. We demonstrate that oligomerization involves insertion of the BH3 domain of one Bak molecule into the groove of another and may produce symmetric Bak dimers. We conclude that this BH3:groove interaction is essential to nucleate Bak oligomerization, which in turn is required for its proapoptotic function.
Assuntos
Apoptose/fisiologia , Conformação Proteica , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteína 11 Semelhante a Bcl-2 , Células Cultivadas , Dimerização , Dissulfetos/química , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismoRESUMO
Successful replication and transmission of large DNA viruses such as the cytomegaloviruses (CMV) family of viruses depends on the ability to interfere with multiple aspects of the host immune response. Apoptosis functions as a host innate defence mechanism against viral infection, and the capacity to interfere with this process is essential for the replication of many viruses. The Bcl-2 family of proteins are the principle regulators of apoptosis, with two pro-apoptotic members, Bax and Bak, essential for apoptosis to proceed. The m38.5 protein encoded by murine CMV (MCMV) has been identified as Bax-specific inhibitor of apoptosis. Recently, m41.1, a protein product encoded by the m41 open reading frame (ORF) of MCMV, has been shown to inhibit Bak activity in vitro. Here we show that m41.1 is critical for optimal MCMV replication in vivo. Growth of a m41.1 mutant was attenuated in multiple organs, a defect that was not apparent in Bak(-/-) mice. Thus, m41.1 promotes MCMV replication by inhibiting Bak-dependent apoptosis during in vivo infection. The results show that Bax and Bak mediate non-redundant functions during MCMV infection and that the virus produces distinct inhibitors for each protein to counter the activity of these proteins.
Assuntos
Apoptose/fisiologia , Proteínas Inibidoras de Apoptose/metabolismo , Muromegalovirus/patogenicidade , Replicação Viral/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Imunidade Inata , Proteínas Inibidoras de Apoptose/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Muromegalovirus/metabolismo , Proteína X Associada a bcl-2/metabolismoRESUMO
Bak and Bax are the essential effectors of the intrinsic pathway of apoptosis. Following an apoptotic stimulus, both undergo significant changes in conformation that facilitates their self-association to form pores in the mitochondrial outer membrane. However, the molecular structures of Bak and Bax oligomeric pores remain elusive. To characterize how Bak forms pores during apoptosis, we investigated its oligomerization under native conditions using blue native PAGE. We report that, in a healthy cell, inactive Bak is either monomeric or in a large complex involving VDAC2. Following an apoptotic stimulus, activated Bak forms BH3:groove homodimers that represent the basic stable oligomeric unit. These dimers multimerize to higher-order oligomers via a labile interface independent of both the BH3 domain and groove. Linkage of the α6:α6 interface is sufficient to stabilize higher-order Bak oligomers on native PAGE, suggesting an important role in the Bak oligomeric pore. Mutagenesis of the α6 helix disrupted apoptotic function because a chimera of Bak with the α6 derived from Bcl-2 could be activated by truncated Bid (tBid) and could form BH3:groove homodimers but could not form high molecular weight oligomers or mediate cell death. An α6 peptide could block Bak function but did so upstream of dimerization, potentially implicating α6 as a site for activation by BH3-only proteins. Our examination of native Bak oligomers indicates that the Bak apoptotic pore forms by the multimerization of BH3:groove homodimers and reveals that Bak α6 is not only important for Bak oligomerization and function but may also be involved in how Bak is activated by BH3-only proteins.
Assuntos
Apoptose/fisiologia , Multimerização Proteica/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Células Cultivadas , Camundongos , Camundongos Knockout , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Canal de Ânion 2 Dependente de Voltagem/genética , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genéticaRESUMO
Apoptotic cell death is regulated by the BCL-2 protein family, with clusters of BAK or BAX homodimers driving pore formation in the mitochondrial outer membrane via a poorly understood process. There is growing evidence that, in addition to BAK and BAX, lipids play an important role in pore formation. Towards a better understanding of the lipidic drivers of apoptotic pore formation in isolated mitochondria, two complementary approaches were taken. Firstly, the lipids released during BAK-mediated pore formation were measured with targeted lipidomics, revealing enrichment of long chain polyunsaturated lysophospholipids (LPLs) in the released fraction. In contrast, the BAK protein was not released suggesting that BAK and LPLs locate to distinct microdomains. Secondly, added cholesterol not only prevented pore formation but prevented the clustering of BAK homodimers. Our data lead us to a model in which BAK clustering triggers formation of a separate microdomain rich in LPLs that can progress to lipid shedding and the opening of a lipid-lined pore. Pore stabilisation and growth may be due to BAK dimers then moving to the pore edge. Our BAK-lipid microdomain model supports the heterogeneity of BAK assemblies, and the observed lipid-release signature gives new insight into the genesis of the apoptotic pore.
RESUMO
BAX and BAK are pro-apoptotic members of the BCL2 family that are required to permeabilize the mitochondrial outer membrane. The proteins can adopt a non-activated monomeric conformation, or an activated conformation in which the exposed BH3 domain facilitates binding either to a prosurvival protein or to another activated BAK or BAX protein to promote pore formation. Certain cancer cells are proposed to have high levels of activated BAK sequestered by MCL1 or BCLXL, thus priming these cells to undergo apoptosis in response to BH3 mimetic compounds that target MCL1 or BCLXL. Here we report the first antibody, 14G6, that is specific for the non-activated BAK conformer. A crystal structure of 14G6 Fab bound to BAK revealed a binding site encompassing both the α1 helix and α5-α6 hinge regions of BAK, two sites involved in the unfolding of BAK during its activation. In mitochondrial experiments, 14G6 inhibited BAK unfolding triggered by three diverse BAK activators, supporting crucial roles for both α1 dissociation and separation of the core (α2-α5) and latch (α6-α9) regions in BAK activation. 14G6 bound the majority of BAK in several leukaemia cell lines, and binding decreased following treatment with BH3 mimetics, indicating only minor levels of constitutively activated BAK in those cells. In summary, 14G6 provides a new means of assessing BAK status in response to anti-cancer treatments.
Assuntos
Proteína Killer-Antagonista Homóloga a bcl-2 , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidoresRESUMO
BH3-mimetic drugs are an anti-cancer therapy that can induce apoptosis in malignant cells by directly binding and inhibiting pro-survival proteins of the BCL-2 family. The BH3-mimetic drug venetoclax, which targets BCL-2, has been approved for the treatment of chronic lymphocytic leukaemia and acute myeloid leukaemia by regulatory authorities worldwide. However, while most patients initially respond well, resistance and relapse while on this drug is an emerging and critical issue in the clinic. Though some studies have begun uncovering the factors involved in resistance to BCL-2-targeting BH3-mimetic drugs, little focus has been applied to pre-emptively tackle resistance for the next generation of BH3-mimetic drugs targeting MCL-1, which are now in clinical trials for diverse blood cancers. Therefore, using pre-clinical mouse and human models of aggressive lymphoma, we sought to predict factors likely to contribute to the development of resistance in patients receiving MCL-1-targeting BH3-mimetic drugs. First, we performed multiple whole genome CRISPR/Cas9 KO screens and identified that loss of the pro-apoptotic effector protein BAX, but not its close relative BAK, could confer resistance to MCL-1-targeting BH3-mimetic drugs in both short-term and long-term treatment regimens, even in lymphoma cells lacking the tumour suppressor TRP53. Furthermore, we found that mouse Eµ-Myc lymphoma cells selected for loss of BAX, as well as upregulation of the untargeted pro-survival BCL-2 family proteins BCL-XL and A1, when made naturally resistant to MCL-1 inhibitors by culturing them in increasing doses of drug over time, a situation mimicking the clinical application of these drugs. Finally, we identified therapeutic approaches which could overcome these two methods of resistance: the use of chemotherapeutic drugs or combined BH3-mimetic treatment, respectively. Collectively, these results uncover some key factors likely to cause resistance to MCL-1 inhibition in the clinic and suggest rational therapeutic strategies to overcome resistance that should be investigated further.
Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Animais , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteína bcl-X/metabolismoRESUMO
Bax and Bak are two nuclear-encoded proteins present in higher eukaryotes that are able to pierce the mitochondrial outer membrane to mediate cell death by apoptosis. Thus, organelles recruited by nucleated cells to supply energy can be recruited by Bax and Bak to kill cells. The two proteins lie in wait in healthy cells where they adopt a globular α-helical structure, seemingly as monomers. Following a variety of stress signals, they convert into pore-forming proteins by changing conformation and assembling into oligomeric complexes in the mitochondrial outer membrane. Proteins from the mitochondrial intermembrane space then empty into the cytosol to activate proteases that dismantle the cell. The arrangement of Bax and Bak in membrane-bound complexes, and how the complexes porate the membrane, is far from being understood. However, recent data indicate that they first form symmetric BH3:groove dimers which can be linked via an interface between the α6-helices to form high order oligomers. Here, we review how Bax and Bak change conformation and oligomerize, as well as how oligomers might form a pore. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Assuntos
Apoptose , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética , Animais , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Biologia Molecular , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismoRESUMO
The Bcl-2 family regulates apoptosis by controlling mitochondrial integrity. To clarify whether its prosurvival members function by sequestering their Bcl-2 homology 3 (BH3)-only ligands or their multidomain relatives Bak and Bax, we analyzed whether four prosurvival proteins differing in their ability to bind specific BH3 peptides or Bak could protect isolated mitochondria. Most BH3 peptides could induce temperature-dependent cytochrome c release, but permeabilization was prevented by Bcl-x(L), Bcl-w, Mcl-1, or BHRF1. However, their protection correlated with the ability to bind Bak rather than the added BH3 peptide and could be overcome only by BH3 peptides that bind directly to the appropriate prosurvival member. Mitochondria protected by both Bcl-x(L)-like and Mcl-1 proteins were disrupted only by BH3 peptides that engage both. BH3-only reagents freed Bak from Bcl-x(L) and Mcl-1 in mitochondrial and cell lysates. The findings support a model for the control of apoptosis in which certain prosurvival proteins sequester Bak/Bax, and BH3-only proteins must neutralize all protective prosurvival proteins to allow Bak/Bax to induce mitochondrial disruption.
Assuntos
Apoptose , Mitocôndrias/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Células HeLa , Humanos , Ligantes , Fígado/citologia , Camundongos , Membranas Mitocondriais/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas de Neoplasias/metabolismo , Óvulo/citologia , Permeabilidade , Temperatura , Xenopus laevisRESUMO
Despite their common use in research, monoclonal antibodies are currently not systematically sequenced. This can lead to issues with reproducibility and the occasional loss of antibodies with loss of cell lines. Hybridoma cell lines have been the primary means of generating monoclonal antibodies from immunized animals, including mice, rats, rabbits, and alpacas. Excluding therapeutic antibodies, few hybridoma-derived antibody sequences are known. Sanger sequencing has been "the gold standard" for antibody gene sequencing, but this method relies on the availability of species-specific degenerate primer sets for amplification of light and heavy antibody genes and it requires lengthy and expensive cDNA preparation. Here, we leveraged recent improvements in long-read Oxford Nanopore Technologies (ONT) sequencing to develop Nanopore Antibody sequencing (NAb-seq): a three-day, species-independent, and cost-effective workflow to characterize paired full-length immunoglobulin light- and heavy-chain genes from hybridoma cell lines. When compared to Sanger sequencing of two hybridoma cell lines, long-read ONT sequencing was highly accurate, reliable, and amenable to high throughput. We further show that the method is applicable to single cells, allowing efficient antibody discovery in rare populations such as memory B cells. In summary, NAb-seq promises to accelerate identification and validation of hybridoma antibodies as well as antibodies from single B cells used in research, diagnostics, and therapeutics.
Assuntos
Anticorpos Monoclonais , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Linhagem Celular , Análise Custo-Benefício , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hibridomas/metabolismo , Camundongos , Coelhos , Ratos , Reprodutibilidade dos TestesRESUMO
Pro-apoptotic BAK and BAX are activated by BH3-only proteins to permeabilise the outer mitochondrial membrane. The antibody 7D10 also activates BAK on mitochondria and its epitope has previously been mapped to BAK residues in the loop connecting helices α1 and α2 of BAK. A crystal structure of the complex between the Fv fragment of 7D10 and the BAK mutant L100A suggests a possible mechanism of activation involving the α1-α2 loop residue M60. M60 mutants of BAK have reduced stability and elevated sensitivity to activation by BID, illustrating that M60, through its contacts with residues in helices α1, α5 and α6, is a linchpin stabilising the inert, monomeric structure of BAK. Our data demonstrate that BAK's α1-α2 loop is not a passive covalent connector between secondary structure elements, but a direct restraint on BAK's activation.
Assuntos
Apoptose , Proteína Killer-Antagonista Homóloga a bcl-2 , Anticorpos , Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Membranas Mitocondriais/metabolismo , Estrutura Secundária de Proteína , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/genéticaRESUMO
Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer, with treatment options often constrained due to inherent resistance of malignant cells to conventional therapy. We investigated the impact of triggering programmed cell death (PCD) by using BH3 mimetic drugs in human GBM cell lines. We demonstrate that co-targeting the pro-survival proteins BCL-XL and MCL-1 was more potent at killing six GBM cell lines compared to conventional therapy with Temozolomide or the bromodomain inhibitor JQ1 in vitro. Enhanced cell killing was observed in U251 and SNB-19 cells in response to dual treatment with TMZ or JQ1 combined with a BCL-XL inhibitor, compared to single agent treatment. This was reflected in abundant cleavage/activation of caspase-3 and cleavage of PARP1, markers of apoptosis. U251 and SNB-19 cells were more readily killed by a combination of BH3 mimetics targeting BCL-XL and MCL-1 as opposed to dual treatment with the BCL-2 inhibitor Venetoclax and a BCL-XL inhibitor. The combined loss of BAX and BAK, the essential executioners of intrinsic apoptosis, rendered U251 and SNB-19 cells refractory to any of the drug combinations tested, demonstrating that apoptosis is responsible for their killing. In an orthotopic mouse model of GBM, we demonstrate that the BCL-XL inhibitor A1331852 can penetrate the brain, with A1331852 detected in both tumour and healthy brain regions. We also investigated the impact of combining small molecule inducers of ferroptosis, erastin and RSL3, with BH3 mimetic drugs. We found that a BCL-XL or an MCL-1 inhibitor potently cooperates with inducers of ferroptosis in killing U251 cells. Overall, these findings demonstrate the potential of dual targeting of distinct PCD signalling pathways in GBM and may guide the utility of BCL-XL inhibitors and inducers of ferroptosis with standard of care treatment for improved therapies for GBM.