Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 340, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836106

RESUMO

BACKGROUND: Fruits are the seed-bearing structures of flowering plants and are highly diverse in terms of morphology, texture and maturation. Dehiscent fruits split open upon maturation to discharge their seeds while indehiscent fruits are dispersed as a whole. Indehiscent fruits evolved from dehiscent fruits several times independently in the crucifer family (Brassicaceae). The fruits of Lepidium appelianum, for example, are indehiscent while the fruits of the closely related L. campestre are dehiscent. Here, we investigate the molecular and genetic mechanisms underlying the evolutionary transition from dehiscent to indehiscent fruits using these two Lepidium species as model system. RESULTS: We have sequenced the transcriptomes and small RNAs of floral buds, flowers and fruits of L. appelianum and L. campestre and analyzed differentially expressed genes (DEGs) and differently differentially expressed genes (DDEGs). DEGs are genes that show significantly different transcript levels in the same structures (buds, flowers and fruits) in different species, or in different structures in the same species. DDEGs are genes for which the change in expression level between two structures is significantly different in one species than in the other. Comparing the two species, the highest number of DEGs was found in flowers, followed by fruits and floral buds while the highest number of DDEGs was found in fruits versus flowers followed by flowers versus floral buds. Several gene ontology terms related to cell wall synthesis and degradation were overrepresented in different sets of DEGs highlighting the importance of these processes for fruit opening. Furthermore, the fruit valve identity genes FRUITFULL and YABBY3 were among the DEGs identified. Finally, the microRNA miR166 as well as the TCP transcription factors BRANCHED1 (BRC1) and TCP FAMILY TRANSCRIPTION FACTOR 4 (TCP4) were found to be DDEGs. CONCLUSIONS: Our study reveals differences in gene expression between dehiscent and indehiscent fruits and uncovers miR166, BRC1 and TCP4 as candidate genes for the evolutionary transition from dehiscent to indehiscent fruits in Lepidium.


Assuntos
Brassicaceae , Lepidium , Brassicaceae/genética , Brassicaceae/metabolismo , Flores/genética , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Lepidium/genética , Transcriptoma
2.
PLoS One ; 15(8): e0227528, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32841235

RESUMO

The morphology and physiology of diaspores play crucial roles in determining the fate of seeds in unpredictable habitats. In some genera of the Brassicaceae different types of diaspores can be found. Lepidium appelianum produces non-dormant seeds within indehiscent fruits while in L. campestre dormant seeds are released from dehiscent fruits. We investigated whether the allocation of relevant defence compounds into different tissues in different Lepidium species may be related to the diverse dispersal strategy (indehiscent and dehiscent) and seed physiology (non-dormant and dormant). Total glucosinolate concentration and composition were analysed in immature and mature seeds and pericarps of L. appelianum and L. campestre using high-performance liquid chromatography. Moreover, for comparison, transgenic RNAi L. campestre lines were used that produce indehiscent fruits due to silencing of LcINDEHISCENCE, the INDEHISCENCE ortholog of L. campestre. Total glucosinolate concentrations were lower in immature compared to mature seeds in all studied Lepidium species and transgenic lines. In contrast, indehiscent fruits of L. appelianum maintained their total glucosinolate concentration in mature pericarps compared to immature ones, while in dehiscent L. campestre and in indehiscent RNAi-LcIND L. campestre a significant decrease in total glucosinolate concentrations from immature to mature pericarps could be detected. Indole glucosinolates were detected in lower abundance than the other glucosinolate classes (aliphatic and aromatic). Relatively high concentrations of 4-methoxyindol-3-ylmethyl glucosinolate were found in mature seeds of L. appelianum compared to other tissues, while no indole glucosinolates were detected in mature diaspores of L. campestre. The diaspores of the latter species may rather depend on aliphatic and aromatic glucosinolates for long-term protection. The allocation patterns of glucosinolates correlate with the morpho-physiologically distinct fruits of L. appelianum and L. campestre and may be explained by the distinct dispersal strategies and the dormancy status of both species.


Assuntos
Glucosinolatos/metabolismo , Lepidium/fisiologia , Sementes/metabolismo , Brassicaceae/fisiologia , Cromatografia Líquida de Alta Pressão/métodos , Ecossistema , Frutas/metabolismo , Frutas/fisiologia , Germinação/fisiologia , Lepidium/crescimento & desenvolvimento , Dormência de Plantas , Sementes/fisiologia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA