Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer ; 21(1): 213, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476495

RESUMO

BACKGROUND: Inactivation of the Hippo pathway promotes Yap nuclear translocation, enabling execution of a transcriptional program that induces tissue growth. Genetic lesions of Hippo intermediates only identify a minority of cancers with illegitimate YAP activation. Yap has been implicated in resistance to targeted therapies, but the mechanisms by which YAP may impact adaptive resistance to MAPK inhibitors are unknown. METHODS: We screened 52 thyroid cancer cell lines for illegitimate nuclear YAP localization by immunofluorescence and fractionation of cell lysates. We engineered a doxycycline (dox)-inducible thyroid-specific mouse model expressing constitutively nuclear YAPS127A, alone or in combination with endogenous expression of either HrasG12V or BrafV600E. We also generated cell lines expressing dox-inducible sh-miR-E-YAP and/or YAPS127A. We used cell viability, invasion assays, immunofluorescence, Western blotting, qRT-PCRs, flow cytometry and cell sorting, high-throughput bulk RNA sequencing and in vivo tumorigenesis to investigate YAP dependency and response of BRAF-mutant cells to vemurafenib. RESULTS: We found that 27/52 thyroid cancer cell lines had constitutively aberrant YAP nuclear localization when cultured at high density (NU-YAP), which rendered them dependent on YAP for viability, invasiveness and sensitivity to the YAP-TEAD complex inhibitor verteporfin, whereas cells with confluency-driven nuclear exclusion of YAP (CYT-YAP) were not. Treatment of BRAF-mutant thyroid cancer cells with RAF kinase inhibitors resulted in YAP nuclear translocation and activation of its transcriptional output. Resistance to vemurafenib in BRAF-mutant thyroid cells was driven by YAP-dependent NRG1, HER2 and HER3 activation across all isogenic human and mouse thyroid cell lines tested, which was abrogated by silencing YAP and relieved by pan-HER kinase inhibitors. YAP activation induced analogous changes in BRAF melanoma, but not colorectal cells. CONCLUSIONS: YAP activation in thyroid cancer generates a dependency on this transcription factor. YAP governs adaptive resistance to RAF kinase inhibitors and induces a gene expression program in BRAFV600E-mutant cells encompassing effectors in the NRG1 signaling pathway, which play a central role in the insensitivity to MAPK inhibitors in a lineage-dependent manner. HIPPO pathway inactivation serves as a lineage-dependent rheostat controlling the magnitude of the adaptive relief of feedback responses to MAPK inhibitors in BRAF-V600E cancers.


Assuntos
Neoplasias da Glândula Tireoide , Humanos , Animais , Camundongos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Quinases raf
2.
Proc Natl Acad Sci U S A ; 114(25): E4951-E4960, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28584132

RESUMO

Oncogenic RAS mutations are present in 15-30% of thyroid carcinomas. Endogenous expression of mutant Ras is insufficient to initiate thyroid tumorigenesis in murine models, indicating that additional genetic alterations are required. We used Sleeping Beauty (SB) transposon mutagenesis to identify events that cooperate with HrasG12V in thyroid tumor development. Random genomic integration of SB transposons primarily generated loss-of-function events that significantly increased thyroid tumor penetrance in Tpo-Cre/homozygous FR-HrasG12V mice. The thyroid tumors closely phenocopied the histological features of human RAS-driven, poorly differentiated thyroid cancers. Characterization of transposon insertion sites in the SB-induced tumors identified 45 recurrently mutated candidate cancer genes. These mutation profiles were remarkably concordant with mutated cancer genes identified in a large series of human poorly differentiated and anaplastic thyroid cancers screened by next-generation sequencing using the MSK-IMPACT panel of cancer genes, which we modified to include all SB candidates. The disrupted genes primarily clustered in chromatin remodeling functional nodes and in the PI3K pathway. ATXN7, a component of a multiprotein complex with histone acetylase activity, scored as a significant SB hit. It was recurrently mutated in advanced human cancers and significantly co-occurred with RAS or NF1 mutations. Expression of ATXN7 mutants cooperated with oncogenic RAS to induce thyroid cell proliferation, pointing to ATXN7 as a previously unrecognized cancer gene.


Assuntos
Ataxina-7/genética , Carcinogênese/genética , Cromatina/genética , Elementos de DNA Transponíveis/genética , Genes ras/genética , Mutagênese/genética , Glândula Tireoide/patologia , Animais , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Oncogenes/genética , Fosfatidilinositol 3-Quinases/genética , Carcinoma Anaplásico da Tireoide/genética
3.
Proc Natl Acad Sci U S A ; 109(35): E2361-70, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22891351

RESUMO

Although tyrosine-phosphorylated or activated STAT3 (pY-STAT3) is a well-described mediator of tumorigenesis, its role in thyroid cancer has not been investigated. We observed that 63 of 110 (57%) human primary papillary thyroid carcinoma (PTC) cases expressed nuclear pY-STAT3 in tumor cells, preferentially in association with the tumor stroma. An inverse relationship between pY-STAT3 expression with tumor size and the presence of distant metastases was observed. Using human thyroid cancer-derived cell lines [harboring rearranged during transfection (RET)/PTC, v-RAF murine sarcoma viral oncogene homolog B (BRAF), or rat sarcoma virus oncogene (RAS) alterations], we determined that IL-6/gp130/JAK signaling is responsible for STAT3 activation. STAT3 knockdown by shRNA in representative thyroid cancer cell lines that express high levels of pY-STAT3 had no effect on in vitro growth. However, xenografted short hairpin STAT3 cells generated larger tumors than control cells. Similarly, STAT3 deficiency in a murine model of BRAFV600E-induced PTC led to thyroid tumors that were more proliferative and larger than those tumors expressing STAT3wt. Genome expression analysis revealed that STAT3 knockdown resulted in the down-regulation of multiple transcripts, including the tumor suppressor insulin-like growth factor binding protein 7. Furthermore, STAT3 knockdown led to an increase in glucose consumption, lactate production, and expression of Hypoxia-inducible factor 1 (HIF1α) target genes, suggesting that STAT3 is a negative regulator of aerobic glycolysis. Our studies show that, in the context of thyroid cancer, STAT3 is paradoxically a negative regulator of tumor growth. These findings suggest that targeting STAT3 in these cancers could enhance tumor size and highlight the complexities of the role of STAT3 in tumorigenesis.


Assuntos
Carcinoma Papilar/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Neoplasias da Glândula Tireoide/metabolismo , Animais , Carcinoma Papilar/secundário , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Receptor gp130 de Citocina/metabolismo , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fator de Transcrição STAT3/genética , Neoplasias da Glândula Tireoide/patologia , Transplante Heterólogo , Microambiente Tumoral/fisiologia
4.
Proc Natl Acad Sci U S A ; 108(4): 1615-20, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21220306

RESUMO

Mutations of BRAF are found in ∼45% of papillary thyroid cancers and are enriched in tumors with more aggressive properties. We developed mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E)/TPO-Cre) to explore the role of endogenous expression of this oncoprotein on tumor initiation and progression. In contrast to other Braf-induced mouse models of tumorigenesis (i.e., melanomas and lung), in which knock-in of Braf(V600E) induces mostly benign lesions, Braf-expressing thyrocytes become transformed and progress to invasive carcinomas with a very short latency, a process that is dampened by treatment with an allosteric MEK inhibitor. These mice also become profoundly hypothyroid due to deregulation of genes involved in thyroid hormone biosynthesis and consequently have high TSH levels. To determine whether TSH signaling cooperates with oncogenic Braf in this process, we first crossed LSL-Braf(V600E)/TPO-Cre with TshR knockout mice. Although oncogenic Braf was appropriately activated in thyroid follicular cells of these mice, they had a lower mitotic index and were not transformed. Thyroid-specific deletion of the Gsα gene in LSL-Braf(V600E)/TPO-Cre/Gnas-E1(fl/fl) mice also resulted in an attenuated cancer phenotype, indicating that the cooperation of TshR with oncogenic Braf is mediated in part by cAMP signaling. Once tumors were established in mice with wild-type TshR, suppression of TSH did not revert the phenotype. These data demonstrate the key role of TSH signaling in Braf-induced papillary thyroid cancer initiation and provide experimental support for recent observations in humans pointing to a strong association between TSH levels and thyroid cancer incidence.


Assuntos
Proteínas Proto-Oncogênicas B-raf/metabolismo , Receptores da Tireotropina/metabolismo , Transdução de Sinais , Neoplasias da Glândula Tireoide/metabolismo , Animais , Carcinoma , Carcinoma Papilar , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas B-raf/genética , Radioimunoensaio , Receptores da Tireotropina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Câncer Papilífero da Tireoide , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Tireotropina/sangue , Tireotropina/metabolismo , Tiroxina/sangue , Tiroxina/metabolismo
5.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36747657

RESUMO

Mutations in the promoter of the telomerase reverse transcriptase ( TERT ) gene are the paradigm of a cross-cancer alteration in a non-coding region. TERT promoter mutations (TPMs) are biomarkers of poor prognosis in several tumors, including thyroid cancers. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein. To study TERT deregulation and its downstream consequences, we generated a Tert mutant promoter mouse model via CRISPR/Cas9 engineering of the murine equivalent locus (Tert -123C>T ) and crossed it with thyroid-specific Braf V600E -mutant mice. We also employed an alternative model of Tert overexpression (K5-Tert). Whereas all Braf V600E animals developed well-differentiated papillary thyroid tumors, 29% and 36% of Braf V600E +Tert -123C>T and Braf V600E +K5-Tert mice progressed to poorly differentiated thyroid cancers at week 20, respectively. Braf+Tert tumors showed increased mitosis and necrosis in areas of solid growth, and older animals from these cohorts displayed anaplastic-like features, i.e., spindle cells and macrophage infiltration. Murine Tert promoter mutation increased Tert transcription in vitro and in vivo , but temporal and intra-tumoral heterogeneity was observed. RNA-sequencing of thyroid tumor cells showed that processes other than the canonical Tert-mediated telomere maintenance role operate in these specimens. Pathway analysis showed that MAPK and PI3K/AKT signaling, as well as processes not previously associated with this tumor etiology, involving cytokine and chemokine signaling, were overactivated. Braf+Tert animals remained responsive to MAPK pathway inhibitors. These models constitute useful pre-clinical tools to understand the cell-autonomous and microenvironment-related consequences of Tert-mediated progression in advanced thyroid cancers and other aggressive tumors carrying TPMs.

6.
Clin Cancer Res ; 29(8): 1620-1630, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36780190

RESUMO

PURPOSE: The determinants of response or resistance to radioiodine (RAI) are unknown. We aimed to identify genomic and transcriptomic factors associated with structural responses to RAI treatment of metastatic thyroid cancer, which occur infrequently, and to test whether high MAPK pathway output was associated with RAI refractoriness. EXPERIMENTAL DESIGN: Exceptional response to RAI was defined as reduction of tumor volume based on RECIST v1.1. We performed a retrospective case-control study of genomic and transcriptomic characteristics of exceptional responders (ER; n = 8) versus nonresponders (NR; n = 16) matched by histologic type and stage at presentation on a 1:2 ratio. RESULTS: ER are enriched for mutations that activate MAPK through RAF dimerization (RAS, class 2 BRAF, RTK fusions), whereas NR are associated with BRAFV600E, which signals as a monomer and is unresponsive to negative feedback. ER have a lower MAPK transcriptional output and a higher thyroid differentiation score (TDS) than NR (P < 0.05). NR are enriched for 1q-gain (P < 0.05) and mutations of genes regulating mRNA splicing and the PI3K pathway. BRAFV600E tumors with 1q-gain have a lower TDS than BRAFV600E/1q-quiet tumors and transcriptomic signatures associated with metastatic propensity. CONCLUSIONS: ER tumors have a lower MAPK output and higher TDS than NR, whereas NR have a high frequency of BRAFV600E and 1q-gain. Molecular profiling of thyroid cancers and further functional validation of the key findings discriminating ER from NR may help predict response to RAI therapy.


Assuntos
Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/radioterapia , Neoplasias da Glândula Tireoide/patologia , Radioisótopos do Iodo/uso terapêutico , Estudos Retrospectivos , Transcriptoma , Estudos de Casos e Controles , Fosfatidilinositol 3-Quinases/genética , Genômica
7.
Mol Cancer Res ; 21(11): 1163-1175, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37478162

RESUMO

Mutations in the promoter of the telomerase reverse transcriptase (TERT) gene are the paradigm of a cross-cancer alteration in a noncoding region. TERT promoter mutations (TPM) are biomarkers of poor prognosis in cancer, including thyroid tumors. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein. To study TERT deregulation and its downstream consequences, we generated a Tert mutant promoter mouse model via CRISPR/Cas9 engineering of the murine equivalent locus (Tert-123C>T) and crossed it with thyroid-specific BrafV600E-mutant mice. We also employed an alternative model of Tert overexpression (K5-Tert). Whereas all BrafV600E animals developed well-differentiated papillary thyroid tumors, 29% and 36% of BrafV600E+Tert-123C>T and BrafV600E+K5-Tert mice progressed to poorly differentiated cancers at week 20, respectively. Tert-upregulated tumors showed increased mitosis and necrosis in areas of solid growth, and older animals displayed anaplastic-like features, that is, spindle cells and macrophage infiltration. Murine TPM increased Tert transcription in vitro and in vivo, but temporal and intratumoral heterogeneity was observed. RNA-sequencing of thyroid tumor cells showed that processes other than the canonical Tert-mediated telomere maintenance role operate in these specimens. Pathway analysis showed that MAPK and PI3K/AKT signaling, as well as processes not previously associated with this tumor etiology, involving cytokine, and chemokine signaling, were overactivated. These models constitute useful preclinical tools to understand the cell-autonomous and microenvironment-related consequences of Tert-mediated progression in advanced thyroid cancers and other aggressive tumors carrying TPMs. IMPLICATIONS: Telomerase-driven cancer progression activates pathways that can be dissected and perhaps therapeutically exploited.


Assuntos
Telomerase , Neoplasias da Glândula Tireoide , Animais , Camundongos , Telomerase/genética , Regulação para Cima , Fosfatidilinositol 3-Quinases/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Mutação , Microambiente Tumoral
8.
JAMA Otolaryngol Head Neck Surg ; 149(4): 300-309, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757708

RESUMO

Importance: Survival outcomes for anaplastic thyroid cancer (ATC), the most aggressive subtype of thyroid cancers, have remained poor. However, targeted therapies and immunotherapies present new opportunities for treatment of this disease. Evaluations of survival outcomes over time with new multimodal therapies are needed for optimizing treatment plans. Objective: To evaluate the association of treatment strategies and tumor characteristics with overall survival (OS) among patients with ATC. Design, Setting, and Participants: This retrospective case series study evaluated the survival outcomes stratified by treatment strategies and tumor characteristics among patients with ATC treated at a tertiary level academic institution from January 1, 2000, to December 31, 2021. Demographic, tumor, treatment, and outcome characteristics were analyzed. Kaplan-Meier method and log rank test modeled OS by treatment type and tumor characteristics. Data were analyzed in May 2022. Main Outcomes and Measures: Overall survival (OS). Results: The study cohort comprised 97 patients with biopsy-proven ATC (median [range] age at diagnosis, 70 [38-93] years; 60 (62%) female and 85 [88%] White individuals; 59 [61%] never smokers). At ATC diagnosis, 18 (19%) patients had stage IVA, 19 (20%) had stage IVB, and 53 (55%) had stage IVC disease. BRAF status was assessed in 38 patients; 18 (47%) had BRAF-V600E variations and 20 (53%), BRAF wild type. Treatment during clinical course included surgery for 44 (45%) patients; chemotherapy, 41 (43%); definitive or adjuvant radiation therapy, 34 (RT; 35%); and targeted therapy, 28 (29%). Median OS for the total cohort was 6.5 (95% CI, 4.3-10.0) months. Inferior OS was found in patients who did not receive surgery (hazard ratio [HR], 2.12; 95% CI, 1.35-3.34; reference, received surgery), chemotherapy (HR, 3.28; 95% CI, 1.99-5.39; reference, received chemotherapy), and definitive or adjuvant RT (HR, 2.47; 95% CI, 1.52-4.02; reference, received definitive/adjuvant RT). On multivariable analysis, age at diagnosis (HR, 1.03; 95% CI, 1.01-1.06), tumor stage IVC (HR, 2.65; 95% CI, 1.35-5.18), and absence of definitive or adjuvant RT (HR, 1.90; 95% CI, 1.01-3.59) were associated with worse OS. Conclusions and Relevance: This retrospective single-institution study found that lower tumor stage, younger age, and the ability to receive definitive or adjuvant RT were associated with improved OS in patients with ATC.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Carcinoma Anaplásico da Tireoide/mortalidade , Carcinoma Anaplásico da Tireoide/patologia , Carcinoma Anaplásico da Tireoide/terapia , Neoplasias da Glândula Tireoide/mortalidade , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/terapia , Humanos , Masculino , Feminino , Taxa de Sobrevida , Terapia Combinada , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Radioterapia Adjuvante , Antineoplásicos/uso terapêutico , Tireoidectomia , Resultado do Tratamento
9.
Proc Natl Acad Sci U S A ; 106(19): 7979-84, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-19416908

RESUMO

We developed mice with germline endogenous expression of oncogenic Hras to study effects on development and mechanisms of tumor initiation. They had high perinatal mortality, abnormal cranial dimensions, defective dental ameloblasts, and nasal septal deviation, consistent with some of the features of human Costello syndrome. These mice developed papillomas and angiosarcomas, which were associated with Hras(G12V) allelic imbalance and augmented Hras signaling. Endogenous expression of Hras(G12V) was also associated with a higher mutation rate in vivo. Tumor initiation by Hras(G12V) likely requires augmentation of signal output, which in papillomas and angiosarcomas is achieved via increased Hras-gene copy number, which may be favored by a higher mutation frequency in cells expressing the oncoprotein.


Assuntos
Neoplasias/genética , Neoplasias/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Alelos , Animais , Análise Mutacional de DNA , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Mutação , Oncogenes , Transdução de Sinais , Tomografia Computadorizada por Raios X/métodos
10.
J Clin Endocrinol Metab ; 107(4): 1030-1039, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34897468

RESUMO

CONTEXT: The BRAFV600E mutation has been associated with more advanced clinical stage in papillary thyroid cancer (PTC) and decreased responsiveness to radioiodine (RAI). However, some BRAF mutant PTCs respond to RAI and have an indolent clinical behavior suggesting the presence of different subtypes of BRAF mutant tumors with distinct prognosis. OBJECTIVE: To characterize the molecular and clinical features of 2 subtypes of BRAF-mutant PTCs defined by their degree of expression of iodine metabolism genes. DESIGN: 227 BRAF-mutant PTCs from the Cancer Genome Atlas Thyroid Cancer study were divided into 2 subgroups based on their thyroid differentiation score (TDS): BRAF-TDShi and BRAF-TDSlo. Demographic, clinico-pathological, and molecular characteristics of the 2 subgroups were compared. RESULTS: Compared to BRAF-TDShi tumors (17%), BRAF-TDSlo tumors (83%) were more frequent in blacks and Hispanics (6% vs 0%, P = 0.035 and 12% vs 0%, P = 0.05, respectively), they were larger (2.95 ± 1.7 vs 2.03 ± 1.5, P = 0.002), with more tumor-involved lymph nodes (3.9 ± 5.8 vs 2.0 ± 4.2, P = 0.042), and a higher frequency of distant metastases (3% vs 0%, P = 0.043). Gene set enrichment analysis showed positive enrichment for RAS signatures in the BRAF-TDShi cohort, with corresponding reciprocal changes in the BRAF-TDSlo group. Several microRNAs (miRs) targeting nodes in the transforming growth factor ß (TGFß)-SMAD pathway, miR-204, miR-205, and miR-144, were overexpressed in the BRAF-TDShi group. In the subset with follow-up data, BRAF-TDShi tumors had higher complete responses to therapy (94% vs 57%, P < 0.01) than BRAF-TDSlo tumors. CONCLUSION: Enrichment for RAS signatures, key genes involved in cell polarity and specific miRs targeting the TGFß-SMAD pathway define 2 subtypes of BRAF-mutant PTCs with distinct clinical characteristics and prognosis.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Radioisótopos do Iodo , MicroRNAs/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Fator de Crescimento Transformador beta/genética
11.
Biomedicines ; 10(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453506

RESUMO

Papillary thyroid cancer (PTC) is the most common endocrine malignancy for which diagnosis and recurrences still challenge clinicians. New perspectives to overcome these issues could come from the study of extracellular vesicle (EV) populations and content. Here, we aimed to elucidate the heterogeneity of EVs circulating in the tumor and the changes in their microRNA content during cancer progression. Using a mouse model expressing BRAFV600E, we isolated and characterized EVs from thyroid tissue by ultracentrifugations and elucidated their microRNA content by small RNA sequencing. The cellular origin of EVs was investigated by ExoView and that of deregulated EV-microRNA by qPCR on FACS-sorted cell populations. We found that PTC released more EVs bearing epithelial and immune markers, as compared to the healthy thyroid, so that changes in EV-microRNAs abundance were mainly due to their deregulated expression in thyrocytes. Altogether, our work provides a full description of in vivo-derived EVs produced by, and within, normal and cancerous thyroid. We elucidated the global EV-microRNAs signature, the dynamic loading of microRNAs in EVs upon BRAFV600E induction, and their cellular origin. Finally, we propose that thyroid tumor-derived EV-microRNAs could support the establishment of a permissive immune microenvironment.

12.
Cancers (Basel) ; 14(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36230610

RESUMO

Papillary thyroid carcinoma (PTC) is the most frequent histological subtype of thyroid cancers (TC), and BRAFV600E genetic alteration is found in 60% of this endocrine cancer. This oncogene is associated with poor prognosis, resistance to radioiodine therapy, and tumor progression. Histological follow-up by anatomo-pathologists revealed that two-thirds of surgically-removed thyroids do not present malignant lesions. Thus, continued fundamental research into the molecular mechanisms of TC downstream of BRAFV600E remains central to better understanding the clinical behavior of these tumors. To study PTC, we used a mouse model in which expression of BRAFV600E was specifically switched on in thyrocytes by doxycycline administration. Upon daily intraperitoneal doxycycline injection, thyroid tissue rapidly acquired histological features mimicking human PTC. Transcriptomic analysis revealed major changes in immune signaling pathways upon BRAFV600E induction. Multiplex immunofluorescence confirmed the abundant recruitment of macrophages, among which a population of LYVE-1+/CD206+/STABILIN-1+ was dramatically increased. By genetically inactivating the gene coding for the scavenger receptor STABILIN-1, we showed an increase of CD8+ T cells in this in situ BRAFV600E-dependent TC. Lastly, we demonstrated the presence of CD206+/STABILIN-1+ macrophages in human thyroid pathologies. Altogether, we revealed the recruitment of immunosuppressive STABILIN-1 macrophages in a PTC mouse model and the interest to further study this macrophage subpopulation in human thyroid tissues.

13.
Sci Adv ; 8(25): eabn9699, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731870

RESUMO

Hürthle cell carcinomas (HCCs) display two exceptional genotypes: near-homoplasmic mutation of mitochondrial DNA (mtDNA) and genome-wide loss of heterozygosity (gLOH). To understand the phenotypic consequences of these genetic alterations, we analyzed genomic, metabolomic, and immunophenotypic data of HCC and other thyroid cancers. Both mtDNA mutations and profound depletion of citrate pools are common in HCC and other thyroid malignancies, suggesting that thyroid cancers are broadly equipped to survive tricarboxylic acid cycle impairment, whereas metabolites in the reduced form of NADH-dependent lysine degradation pathway were elevated exclusively in HCC. The presence of gLOH was not associated with metabolic phenotypes but rather with reduced immune infiltration, indicating that gLOH confers a selective advantage partially through immunosuppression. Unsupervised multimodal clustering revealed four clusters of HCC with distinct clinical, metabolomic, and microenvironmental phenotypes but overlapping genotypes. These findings chart the metabolic and microenvironmental landscape of HCC and shed light on the interaction between genotype, metabolism, and the microenvironment in cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias da Glândula Tireoide , Carcinoma Hepatocelular/genética , DNA Mitocondrial/genética , Genótipo , Humanos , Neoplasias Hepáticas/genética , Mutação , Células Oxífilas/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Microambiente Tumoral/genética
14.
Thyroid ; 32(3): 273-282, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045748

RESUMO

Background: Oncogenic activation of mitogen-activated protein kinase (MAPK) signaling is associated with radioiodine refractory (RAIR) thyroid cancer. Preclinical models suggest that activation of the receptor tyrosine kinase erbB-3 (HER3) mitigates the MAPK pathway inhibition achieved by BRAF inhibitors in BRAFV600E mutant thyroid cancers. We hypothesized that combined inhibition of BRAF and HER3 using vemurafenib and the human monoclonal antibody CDX-3379, respectively, would potently inhibit MAPK activation and restore radioactive iodine (RAI) avidity in patients with BRAF-mutant RAIR thyroid cancer. Methods: Patients with BRAFV600E RAIR thyroid cancer were evaluated by thyrogen-stimulated iodine-124 (124I) positron emission tomography-computed tomography (PET/CT) at baseline and after 5 weeks of treatment with oral vemurafenib 960 mg twice daily alone for 1 week, followed by vemurafenib in combination with 1000 mg of intravenous CDX-3379 every 2 weeks. Patients with adequate 124I uptake on the second PET/CT then received therapeutic radioactive iodine (131I) with vemurafenb+CDX-3379. All therapy was discontinued two days later. Treatment response was monitored by serum thyroglobulin measurements and imaging. The primary endpoints were safety and tolerability of vemurafenib+CDX-3379, as well as the proportion of patients after vemurafenb+CDX-3379 therapy with enhanced RAI incorporation warranting therapeutic 131I. Results: Seven patients were enrolled; six were evaluable for the primary endpoints. No grade 3 or 4 toxicities related to CDX-3379 were observed. Five patients had increased RAI uptake after treatment; in 4 patients this increased uptake warranted therapeutic 131I. At 6 months, 2 patients achieved partial response after 131I and 2 progression of disease. Next-generation sequencing of 5 patients showed that all had co-occurring telomerase reverse transcriptase promoter alterations. A deleterious mutation in the SWItch/Sucrose Non-Fermentable (SWI/SNF) gene ARID2 was discovered in the patient without enhanced RAI avidity after therapy and an RAI-resistant tumor from another patient that was sampled off-study. Conclusions: The endpoints for success were met, providing preliminary evidence of vemurafenib+CDX-3379 safety and efficacy for enhancing RAI uptake. Preclinical data and genomic profiling in this small cohort suggest SWI/SNF gene mutations should be investigated as potential markers of resistance to redifferentiation strategies. Further evaluation of vemurafenib+CDX-3379 as a redifferentiation therapy in a larger trial is warranted (ClinicalTrials.gov: NCT02456701).


Assuntos
Antineoplásicos , Neoplasias da Glândula Tireoide , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Humanos , Radioisótopos do Iodo/uso terapêutico , Mutação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/radioterapia , Vemurafenib/uso terapêutico
15.
Endocr Relat Cancer ; 28(6): 391-402, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33890869

RESUMO

Constitutive MAPK activation silences genes required for iodide uptake and thyroid hormone biosynthesis in thyroid follicular cells. Accordingly, most BRAFV600E papillary thyroid cancers (PTC) are refractory to radioiodide (RAI) therapy. MAPK pathway inhibitors rescue thyroid-differentiated properties and RAI responsiveness in mice and patient subsets with BRAFV600E-mutant PTC. TGFB1 also impairs thyroid differentiation and has been proposed to mediate the effects of mutant BRAF. We generated a mouse model of BRAFV600E-PTC with thyroid-specific knockout of the Tgfbr1 gene to investigate the role of TGFB1 on thyroid-differentiated gene expression and RAI uptake in vivo. Despite appropriate loss of Tgfbr1, pSMAD levels remained high, indicating that ligands other than TGFB1 were engaging in this pathway. The activin ligand subunits Inhba and Inhbb were found to be overexpressed in BRAFV600E-mutant thyroid cancers. Treatment with follistatin, a potent inhibitor of activin, or vactosertib, which inhibits both TGFBR1 and the activin type I receptor ALK4, induced a profound inhibition of pSMAD in BRAFV600E-PTCs. Blocking SMAD signaling alone was insufficient to enhance iodide uptake in the setting of constitutive MAPK activation. However, combination treatment with either follistatin or vactosertib and the MEK inhibitor CKI increased 124I uptake compared to CKI alone. In summary, activin family ligands converge to induce pSMAD in Braf-mutant PTCs. Dedifferentiation of BRAFV600E-PTCs cannot be ascribed primarily to activation of SMAD. However, targeting TGFß/activin-induced pSMAD augmented MAPK inhibitor effects on iodine incorporation into BRAF tumor cells, indicating that these two pathways exert interdependent effects on the differentiation state of thyroid cancer cells.


Assuntos
Radioisótopos do Iodo , Neoplasias da Glândula Tireoide , Ativinas/metabolismo , Animais , Folistatina , Humanos , Iodetos/metabolismo , Ligantes , Sistema de Sinalização das MAP Quinases , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Proteínas Smad/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia
16.
Cancer Discov ; 11(5): 1158-1175, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33318036

RESUMO

Mutations of subunits of the SWI/SNF chromatin remodeling complexes occur commonly in cancers of different lineages, including advanced thyroid cancers. Here we show that thyroid-specific loss of Arid1a, Arid2, or Smarcb1 in mouse BRAFV600E-mutant tumors promotes disease progression and decreased survival, associated with lesion-specific effects on chromatin accessibility and differentiation. As compared with normal thyrocytes, BRAFV600E-mutant mouse papillary thyroid cancers have decreased lineage transcription factor expression and accessibility to their target DNA binding sites, leading to impairment of thyroid-differentiated gene expression and radioiodine incorporation, which is rescued by MAPK inhibition. Loss of individual SWI/SNF subunits in BRAF tumors leads to a repressive chromatin state that cannot be reversed by MAPK pathway blockade, rendering them insensitive to its redifferentiation effects. Our results show that SWI/SNF complexes are central to the maintenance of differentiated function in thyroid cancers, and their loss confers radioiodine refractoriness and resistance to MAPK inhibitor-based redifferentiation therapies. SIGNIFICANCE: Reprogramming cancer differentiation confers therapeutic benefit in various disease contexts. Oncogenic BRAF silences genes required for radioiodine responsiveness in thyroid cancer. Mutations in SWI/SNF genes result in loss of chromatin accessibility at thyroid lineage specification genes in BRAF-mutant thyroid tumors, rendering them insensitive to the redifferentiation effects of MAPK blockade.This article is highlighted in the In This Issue feature, p. 995.


Assuntos
Proteínas Cromossômicas não Histona/genética , Neoplasias da Glândula Tireoide/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Técnicas de Reprogramação Celular , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos , Mutação , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
17.
Cancer Res ; 67(14): 6956-64, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17638907

RESUMO

The RET kinase has emerged as a promising target for the therapy of medullary thyroid cancers (MTC) and of a subset of papillary thyroid cancers. NVP-AST487, a N,N'-diphenyl urea with an IC(50) of 0.88 mumol/L on RET kinase, inhibited RET autophosphorylation and activation of downstream effectors, and potently inhibited the growth of human thyroid cancer cell lines with activating mutations of RET but not of lines without RET mutations. NVP-AST487 induced a dose-dependent growth inhibition of xenografts of NIH3T3 cells expressing oncogenic RET, and of the MTC cell line TT in nude mice. MTCs secrete calcitonin, a useful indicator of tumor burden. Human plasma calcitonin levels derived from the TT cell xenografts were inhibited shortly after treatment, when tumor volume was still unchanged, indicating that the effects of RET kinase inhibition on calcitonin secretion were temporally dissociated from its tumor-inhibitory properties. Accordingly, NVP-AST487 inhibited calcitonin gene expression in vitro in TT cells, in part, through decreased gene transcription. These data point to a previously unknown physiologic role of RET signaling on calcitonin gene expression. Indeed, the RET ligands persephin and GDNF robustly stimulated calcitonin mRNA, which was blocked by pretreatment with NVP-AST487. Antagonists of RET kinase activity in patients with MTC may result in effects on plasma calcitonin that are either disproportionate or dissociated from the effects on tumor burden, because RET kinase mediates a physiologic pathway controlling calcitonin secretion. The role of traditional tumor biomarkers may need to be reassessed as targeted therapies designed against oncoproteins with key roles in pathogenesis are implemented.


Assuntos
Antineoplásicos/farmacologia , Calcitonina/antagonistas & inibidores , Carbanilidas/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/enzimologia , Animais , Calcitonina/metabolismo , Linhagem Celular Tumoral , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Concentração Inibidora 50 , Camundongos , Transplante de Neoplasias , Fosforilação
18.
Endocrinol Metab (Seoul) ; 34(1): 11-22, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30784243

RESUMO

The development of next generation sequencing (NGS) has led to marked advancement of our understanding of genetic events mediating the initiation and progression of thyroid cancers. The NGS studies have confirmed the previously reported high frequency of mutually-exclusive oncogenic alterations affecting BRAF and RAS proto-oncogenes in all stages of thyroid cancer. Initially identified by traditional sequencing approaches, the NGS studies also confirmed the acquisition of alterations that inactivate tumor protein p53 (TP53) and activate phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) in advanced thyroid cancers. Novel alterations, such as those in telomerase reverse transcriptase (TERT) promoter and mating-type switching/sucrose non-fermenting (SWI/SNF) complex, are also likely to promote progression of the BRAFV600E-driven thyroid cancers. A number of genetically engineered mouse models (GEMM) of BRAFV600E-driven thyroid cancer have been developed to investigate thyroid tumorigenesis mediated by oncogenic BRAF and to explore the role of genetic alterations identified in the genomic analyses of advanced thyroid cancer to promote tumor progression. This review will discuss the various GEMMs that have been developed to investigate oncogenic BRAFV600E-driven thyroid cancers.


Assuntos
Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proto-Oncogenes/genética , Neoplasias da Glândula Tireoide/genética , Animais , Carcinoma Papilar/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Progressão da Doença , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , Camundongos Transgênicos/genética , Mutação , Proto-Oncogene Mas , Telomerase/genética , Neoplasias da Glândula Tireoide/veterinária , Proteína Supressora de Tumor p53/metabolismo
19.
Thyroid ; 29(1): 79-92, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30398411

RESUMO

BACKGROUND: The BRAFV600E mutation is the most common somatic mutation in thyroid cancer. The mechanism associated with BRAF-mutant tumor aggressiveness remains unclear. Lysyl oxidase (LOX) is highly expressed in aggressive thyroid cancers, and involved in cancer metastasis. The objective was to determine whether LOX mediates the effect of the activated MAPK pathway in thyroid cancer. METHODS: The prognostic value of LOX and its association with mutated BRAF was analyzed in The Cancer Genome Atlas and an independent cohort. Inhibition of mutant BRAF and the MAPK pathway, and overexpression of mutant BRAF and mouse models of BRAFV600E were used to test the effect on LOX expression. RESULTS: In The Cancer Genome Atlas cohort, LOX expression was higher in BRAF-mutant tumors compared to wild-type tumors (p < 0.0001). Patients with BRAF-mutant tumors with high LOX expression had a shorter disease-free survival (p = 0.03) compared to patients with a BRAF mutation and the low LOX group. In the independent cohort, a significant positive correlation between LOX and percentage of BRAF mutated cells was found. The independent cohort confirmed high LOX expression to be associated with a shorter disease-free survival (p = 0.01). Inhibition of BRAFV600E and MEK decreased LOX expression. Conversely, overexpression of mutant BRAF increased LOX expression. The mice with thyroid-specific expression of BRAFV600E showed strong LOX and p-ERK expression in tumor tissue. Inhibition of BRAFV600E in transgenic and orthotopic mouse models significantly reduced the tumor burden as well as LOX and p-ERK expression. CONCLUSIONS: The data suggest that BRAFV600E tumors with high LOX expression are associated with more aggressive disease. The biological underpinnings of the clinical findings were confirmed by showing that BRAF and the MAPK pathway regulate LOX expression.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Proteína-Lisina 6-Oxidase/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Mutação , Prognóstico , Proteínas Proto-Oncogênicas B-raf/genética , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Carga Tumoral
20.
Mol Cancer Res ; 17(5): 1036-1048, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30733375

RESUMO

Cancer cell lines are critical models to study tumor progression and response to therapy. In 2008, we showed that approximately 50% of thyroid cancer cell lines were redundant or not of thyroid cancer origin. We therefore generated new authenticated thyroid cancer cell lines and patient-derived xenograft (PDX) models using in vitro and feeder cell approaches, and characterized these models in vitro and in vivo. We developed four thyroid cancer cell lines, two derived from 2 different patients with papillary thyroid cancer (PTC) pleural effusions, CUTC5, and CUTC48; one derived from a patient with anaplastic thyroid cancer (ATC), CUTC60; and one derived from a patient with follicular thyroid cancer (FTC), CUTC61. One PDX model (CUTC60-PDX) was also developed. Short tandem repeat (STR) genotyping showed that each cell line and PDX is unique and match the original patient tissue. The CUTC5 and CUTC60 cells harbor the BRAF (V600E) mutation, the CUTC48 cell line expresses the RET/PTC1 rearrangement, and the CUTC61 cells have the HRAS (Q61R) mutation. Moderate to high levels of PAX8 and variable levels of NKX2-1 were detected in each cell line and PDX. The CUTC5 and CUTC60 cell lines form tumors in orthotopic and flank xenograft mouse models. IMPLICATIONS: We have developed the second RET/PTC1-expressing PTC-derived cell line in existence, which is a major advance in studying RET signaling. We have further linked all cell lines to the originating patients, providing a set of novel, authenticated thyroid cancer cell lines and PDX models to study advanced thyroid cancer.


Assuntos
Adenocarcinoma Folicular/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Adenocarcinoma Folicular/genética , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Mutação , Transplante de Neoplasias , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA