Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Environ Microbiol ; 26(8): e16687, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39168162

RESUMO

Heterotrophic bacteria in the ocean initiate biopolymer degradation using extracellular enzymes that yield low molecular weight hydrolysis products in the environment, or by using a selfish uptake mechanism that retains the hydrolysate for the enzyme-producing cell. The mechanism used affects the availability of hydrolysis products to other bacteria, and thus also potentially the composition and activity of the community. In marine systems, these two mechanisms of substrate processing have been studied in the water column, but to date, have not been investigated in sediments. In surface sediments from an Arctic fjord of Svalbard, we investigated mechanisms of biopolymer hydrolysis using four polysaccharides and mucin, a glycoprotein. Extracellular hydrolysis of all biopolymers was rapid. Moreover, rapid degradation of mucin suggests that it may be a key substrate for benthic microbes. Although selfish uptake is common in ocean waters, only a small fraction (0.5%-2%) of microbes adhering to sediments used this mechanism. Selfish uptake was carried out primarily by Planctomycetota and Verrucomicrobiota. The overall dominance of extracellular hydrolysis in sediments, however, suggests that the bulk of biopolymer processing is carried out by a benthic community relying on the sharing of enzymatic capabilities and scavenging of public goods.


Assuntos
Bactérias , Sedimentos Geológicos , Sedimentos Geológicos/microbiologia , Biopolímeros/metabolismo , Bactérias/metabolismo , Hidrólise , Água do Mar/microbiologia , Água do Mar/química , Polissacarídeos/metabolismo , Regiões Árticas , Svalbard , Mucinas/metabolismo
2.
Nature ; 539(7629): 396-401, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27749816

RESUMO

The anaerobic formation and oxidation of methane involve unique enzymatic mechanisms and cofactors, all of which are believed to be specific for C1-compounds. Here we show that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C4 hydrocarbon butane. The archaea, proposed genus 'Candidatus Syntrophoarchaeum', show the characteristic autofluorescence of methanogens, and contain highly expressed genes encoding enzymes similar to methyl-coenzyme M reductase. We detect butyl-coenzyme M, indicating archaeal butane activation analogous to the first step in anaerobic methane oxidation. In addition, Ca. Syntrophoarchaeum expresses the genes encoding ß-oxidation enzymes, carbon monoxide dehydrogenase and reversible C1 methanogenesis enzymes. This allows for the complete oxidation of butane. Reducing equivalents are seemingly channelled to HotSeep-1, a thermophilic sulfate-reducing partner bacterium known from the anaerobic oxidation of methane. Genes encoding 16S rRNA and methyl-coenzyme M reductase similar to those identifying Ca. Syntrophoarchaeum were repeatedly retrieved from marine subsurface sediments, suggesting that the presented activation mechanism is naturally widespread in the anaerobic oxidation of short-chain hydrocarbons.


Assuntos
Archaea/metabolismo , Butanos/metabolismo , Mesna/química , Mesna/metabolismo , Alquilação , Anaerobiose , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Biocatálise , Evolução Molecular , Oxirredução , Sulfatos/metabolismo , Temperatura
3.
Proc Natl Acad Sci U S A ; 112(13): 4015-20, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775520

RESUMO

Methane seeps are widespread seafloor ecosystems shaped by the emission of gas from seabed reservoirs. The microorganisms inhabiting methane seeps transform the chemical energy in methane to products that sustain rich benthic communities around the gas leaks. Despite the biogeochemical relevance of microbial methane removal at seeps, the global diversity and dispersion of seep microbiota remain unknown. Here we determined the microbial diversity and community structure of 23 globally distributed methane seeps and compared these to the microbial communities of 54 other seafloor ecosystems, including sulfate-methane transition zones, hydrothermal vents, coastal sediments, and deep-sea surface and subsurface sediments. We found that methane seep communities show moderate levels of microbial richness compared with other seafloor ecosystems and harbor distinct bacterial and archaeal taxa with cosmopolitan distribution and key biogeochemical functions. The high relative sequence abundance of ANME (anaerobic methanotrophic archaea), as well as aerobic Methylococcales, sulfate-reducing Desulfobacterales, and sulfide-oxidizing Thiotrichales, matches the most favorable microbial metabolisms at methane seeps in terms of substrate supply and distinguishes the seep microbiome from other seafloor microbiomes. The key functional taxa varied in relative sequence abundance between different seeps due to the environmental factors, sediment depth and seafloor temperature. The degree of endemism of the methane seep microbiome suggests a high local diversification in these heterogeneous but long-lived ecosystems. Our results indicate that the seep microbiome is structured according to metacommunity processes and that few cosmopolitan microbial taxa mediate the bulk of methane oxidation, with global relevance to methane emission in the ocean.


Assuntos
Sedimentos Geológicos/microbiologia , Metano/química , Microbiota , Água do Mar/microbiologia , Archaea/classificação , Archaea/fisiologia , Biodiversidade , Bases de Dados Genéticas , Deltaproteobacteria/classificação , Deltaproteobacteria/fisiologia , Ecossistema , Gammaproteobacteria/classificação , Gammaproteobacteria/fisiologia , Fontes Hidrotermais/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Environ Microbiol ; 18(9): 3073-91, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26971539

RESUMO

The anaerobic oxidation of methane (AOM) is mediated by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. In thermophilic AOM consortia enriched from Guaymas Basin, members of the ANME-1 clade are associated with bacteria of the HotSeep-1 cluster, which likely perform direct electron exchange via nanowires. The partner bacterium was enriched with hydrogen as sole electron donor and sulfate as electron acceptor. Based on phylogenetic, genomic and metabolic characteristics we propose to name this chemolithoautotrophic sulfate reducer Candidatus Desulfofervidus auxilii. Ca. D. auxilii grows on hydrogen at temperatures between 50°C and 70°C with an activity optimum at 60°C and doubling time of 4-6 days. Its genome draft encodes for canonical sulfate reduction, periplasmic and soluble hydrogenases and autotrophic carbon fixation via the reductive tricarboxylic acid cycle. The presence of genes for pili formation and cytochromes, and their similarity to genes of Geobacter spp., indicate a potential for syntrophic growth via direct interspecies electron transfer when the organism grows in consortia with ANME. This first ANME-free enrichment of an AOM partner bacterium and its characterization opens the perspective for a deeper understanding of syntrophy in anaerobic methane oxidation.


Assuntos
Deltaproteobacteria/metabolismo , Metano/metabolismo , Sulfatos/metabolismo , Anaerobiose , Processos Autotróficos , Ciclo do Carbono , Deltaproteobacteria/genética , Transporte de Elétrons , Sedimentos Geológicos/microbiologia , Oxirredução , Filogenia , Temperatura
5.
Proc Natl Acad Sci U S A ; 109(47): 19321-6, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23129626

RESUMO

The methane-rich, hydrothermally heated sediments of the Guaymas Basin are inhabited by thermophilic microorganisms, including anaerobic methane-oxidizing archaea (mainly ANME-1) and sulfate-reducing bacteria (e.g., HotSeep-1 cluster). We studied the microbial carbon flow in ANME-1/ HotSeep-1 enrichments in stable-isotope-probing experiments with and without methane. The relative incorporation of (13)C from either dissolved inorganic carbon or methane into lipids revealed that methane-oxidizing archaea assimilated primarily inorganic carbon. This assimilation is strongly accelerated in the presence of methane. Experiments with simultaneous amendments of both (13)C-labeled dissolved inorganic carbon and deuterated water provided further insights into production rates of individual lipids derived from members of the methane-oxidizing community as well as their carbon sources used for lipid biosynthesis. In the presence of methane, all prominent lipids carried a dual isotopic signal indicative of their origin from primarily autotrophic microbes. In the absence of methane, archaeal lipid production ceased and bacterial lipid production dropped by 90%; the lipids produced by the residual fraction of the metabolically active bacterial community predominantly carried a heterotrophic signal. Collectively our results strongly suggest that the studied ANME-1 archaea oxidize methane but assimilate inorganic carbon and should thus be classified as methane-oxidizing chemoorganoautotrophs.


Assuntos
Processos Autotróficos/fisiologia , Bactérias/metabolismo , Biota , Ciclo do Carbono/fisiologia , Metano/metabolismo , Anaerobiose , Carbono/metabolismo , Isótopos de Carbono , Marcação por Isótopo , Metabolismo dos Lipídeos , México , Dados de Sequência Molecular , Oxirredução
6.
Annu Rev Microbiol ; 63: 311-34, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19575572

RESUMO

Methane is the most abundant hydrocarbon in the atmosphere, and it is an important greenhouse gas, which has so far contributed an estimated 20% of postindustrial global warming. A great deal of biogeochemical research has focused on the causes and effects of the variation in global fluxes of methane throughout earth's history, but the underlying microbial processes and their key agents remain poorly understood. This is a disturbing knowledge gap because 85% of the annual global methane production and about 60% of its consumption are based on microbial processes. Only three key functional groups of microorganisms of limited diversity regulate the fluxes of methane on earth, namely the aerobic methanotrophic bacteria, the methanogenic archaea, and their close relatives, the anaerobic methanotrophic archaea (ANME). The ANME represent special lines of descent within the Euryarchaeota and appear to gain energy exclusively from the anaerobic oxidation of methane (AOM), with sulfate as the final electron acceptor according to the net reaction: CH(4) + SO(42-) ---> HCO(3-) + HS(-) + H(2)O. This review summarizes what is known and unknown about AOM on earth and its key catalysts, the ANME clades and their bacterial partners.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Metano/metabolismo , Anaerobiose , Oxirredução , Sulfatos/metabolismo
7.
ISME J ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115410

RESUMO

Heterotrophic microbes are central to organic matter degradation and transformation in marine sediments. Currently, most investigations of benthic microbiomes do not differentiate between processes in the porewater and on the grains and, hence, only show a generalized picture of the community. This limits our understanding of the structure and functions of sediment microbiomes. To address this problem, we fractionated sandy surface sediment microbial communities from a coastal site in Isfjorden, Svalbard, into cells associated with the porewater, loosely attached to grains, and firmly attached to grains; we found dissimilar bacterial communities and metabolic activities in these fractions. Most (84%-89%) of the cells were firmly attached, and this fraction comprised more anaerobes, such as sulfate reducers, than the other fractions. The porewater and loosely attached fractions (3% and 8%-13% of cells, respectively) had more aerobic heterotrophs. These two fractions generally showed a higher frequency of dividing cells, polysaccharide (laminarin) hydrolysis rates, and per-cell O2 consumption than the firmly attached cells. Thus, the different fractions occupy distinct niches within surface sediments: the firmly attached fraction is potentially made of cells colonizing areas on the grain that are protected from abrasion, but might be more diffusion-limited for organic matter and electron acceptors. In contrast, the porewater and loosely attached fractions are less resource-limited and have faster growth. Their cell numbers are kept low possibly through abrasion and exposure to grazers. Differences in community composition and activity of these cell fractions point to their distinct roles and contributions to carbon cycling within surface sediments.

8.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365229

RESUMO

Coastal shelf sediments are hot spots of organic matter mineralization. They receive up to 50% of primary production, which, in higher latitudes, is strongly seasonal. Polar and temperate benthic bacterial communities, however, show a stable composition based on comparative 16S rRNA gene sequencing despite different microbial activity levels. Here, we aimed to resolve this contradiction by identifying seasonal changes at the functional level, in particular with respect to algal polysaccharide degradation genes, by combining metagenomics, metatranscriptomics, and glycan analysis in sandy surface sediments from Isfjorden, Svalbard. Gene expressions of diverse carbohydrate-active enzymes changed between winter and spring. For example, ß-1,3-glucosidases (e.g. GH30, GH17, GH16) degrading laminarin, an energy storage molecule of algae, were elevated in spring, while enzymes related to α-glucan degradation were expressed in both seasons with maxima in winter (e.g. GH63, GH13_18, and GH15). Also, the expression of GH23 involved in peptidoglycan degradation was prevalent, which is in line with recycling of bacterial biomass. Sugar extractions from bulk sediments were low in concentrations during winter but higher in spring samples, with glucose constituting the largest fraction of measured monosaccharides (84% ± 14%). In porewater, glycan concentrations were ~18-fold higher than in overlying seawater (1107 ± 484 vs. 62 ± 101 µg C l-1) and were depleted in glucose. Our data indicate that microbial communities in sandy sediments digest and transform labile parts of photosynthesis-derived particulate organic matter and likely release more stable, glucose-depleted residual glycans of unknown structures, quantities, and residence times into the ocean, thus modulating the glycan composition of marine coastal waters.


Assuntos
Microbiota , Água do Mar , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Bactérias/genética , Glucose , Sedimentos Geológicos/microbiologia
9.
Appl Environ Microbiol ; 79(2): 543-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124238

RESUMO

The detection of anaerobic hydrocarbon degrader populations via catabolic gene markers is important for the understanding of processes at contaminated sites. Fumarate-adding enzymes (FAEs; i.e., benzylsuccinate and alkylsuccinate synthases) have already been established as specific functional marker genes for anaerobic hydrocarbon degraders. Several recent studies based on pure cultures and laboratory enrichments have shown the existence of new and deeply branching FAE gene lineages, such as clostridial benzylsuccinate synthases and homologues, as well as naphthylmethylsuccinate synthases. However, established FAE gene detection assays were not designed to target these novel lineages, and consequently, their detectability in different environments remains obscure. Here, we present a new suite of parallel primer sets for detecting the comprehensive range of FAE markers known to date, including clostridial benzylsuccinate, naphthylmethylsuccinate, and alkylsuccinate synthases. It was not possible to develop one single assay spanning the complete diversity of FAE genes alone. The enhanced assays were tested with a range of hydrocarbon-degrading pure cultures, enrichments, and environmental samples of marine and terrestrial origin. They revealed the presence of several, partially unexpected FAE gene lineages not detected in these environments before: distinct deltaproteobacterial and also clostridial bssA homologues as well as environmental nmsA homologues. These findings were backed up by dual-digest terminal restriction fragment length polymorphism diagnostics to identify FAE gene populations independently of sequencing. This allows rapid insights into intrinsic degrader populations and degradation potentials established in aromatic and aliphatic hydrocarbon-impacted environmental systems.


Assuntos
Bactérias/enzimologia , Enzimas/genética , Fumaratos/metabolismo , Hidrocarbonetos/metabolismo , Redes e Vias Metabólicas/genética , Metagenômica/métodos , Anaerobiose , Bactérias/genética , Biotransformação , Primers do DNA/genética , Enzimas/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA , Microbiologia do Solo , Microbiologia da Água
10.
Nature ; 449(7164): 898-901, 2007 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17882164

RESUMO

The short-chain hydrocarbons ethane, propane and butane are constituents of natural gas. They are usually assumed to be of thermochemical origin, but biological formation of ethane and propane has been also observed. Microbial utilization of short-chain hydrocarbons has been shown in some aerobic species but not in anaerobic species of bacteria. On the other hand, anaerobic utilization of short-chain hydrocarbons would in principle be expected because various anaerobic bacteria grow with higher homologues (> or =C(6)). Indeed, chemical analyses of hydrocarbon-rich habitats with limited or no access of oxygen indicated in situ biodegradation of short-chain hydrocarbons. Here we report the enrichment of sulphate-reducing bacteria (SRB) with such capacity from marine hydrocarbon seep areas. Propane or n-butane as the sole growth substrate led to sediment-free sulphate-reducing enrichment cultures growing at 12, 28 or 60 degrees C. With ethane, a slower enrichment with residual sediment was obtained at 12 degrees C. Isolation experiments resulted in a mesophilic pure culture (strain BuS5) that used only propane and n-butane (methane, isobutane, alcohols or carboxylic acids did not support growth). Complete hydrocarbon oxidation to CO2 and the preferential oxidation of 12C-enriched alkanes were observed with strain BuS5 and other cultures. Metabolites of propane included iso- and n-propylsuccinate, indicating a subterminal as well as an unprecedented terminal alkane activation with involvement of fumarate. According to 16S ribosomal RNA analyses, strain BuS5 affiliates with Desulfosarcina/Desulfococcus, a cluster of widespread marine SRB. An enrichment culture with propane growing at 60 degrees C was dominated by Desulfotomaculum-like SRB. Our results suggest that diverse SRB are able to thrive in seep areas and gas reservoirs on propane and butane, thus altering the gas composition and contributing to sulphide production.


Assuntos
Bactérias Anaeróbias/metabolismo , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/metabolismo , Anaerobiose , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Butanos/metabolismo , Etano/metabolismo , Cinética , Dados de Sequência Molecular , Oceanos e Mares , Oxirredução , Filogenia , Propano/metabolismo , RNA Ribossômico 16S , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/genética
11.
Environ Microbiol ; 14(10): 2689-710, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22882476

RESUMO

Marine gas and hydrocarbon seeps are hot spots of sulfate reduction which is fuelled by methane, other short-chain alkanes or a complex mixture of hydrocarbons. In this study, we investigated the global distribution and abundance of sulfate-reducing bacteria (SRB) in eight gas and hydrocarbon seeps by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH). The majority of Deltaproteobacteria were assigned to specific SRB groups, i.e. 83 ± 14% at gas seeps and 61 ± 35% at hydrocarbon seeps, indicating that the probe set used was sufficient for classification of marine SRB. Statistical analysis showed that SRB abundance and distribution were significantly influenced by habitat type and sediment depth. Members of the Desulfosarcina/Desulfococcus (DSS) clade strongly dominated all sites. Our data indicated the presence of many diverse and highly specialized DSS species of low abundance rather than a single abundant subgroup. In addition, SEEP-SRB2, an uncultured deep-branching deltaproteobacterial group, was ubiquitously found in high abundances at all sites. SEEP-SRB2 members occurred either in a novel association with methanotrophic archaea in shell-type ANME-2/SEEP-SRB2 consortia, in association with ANME-1 archaea in Black Sea microbial mats or as single cells. Two other uncultured groups, SEEP-SRB3 and SEEP-SRB4, were preferentially detected in surface sediments from mud volcanoes.


Assuntos
Archaea/fisiologia , Deltaproteobacteria/fisiologia , Sedimentos Geológicos/microbiologia , Archaea/classificação , Archaea/genética , Carga Bacteriana , Biodiversidade , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Ecossistema , Hibridização in Situ Fluorescente , Filogenia , RNA Ribossômico 16S/genética
12.
Appl Environ Microbiol ; 78(13): 4638-45, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22544246

RESUMO

Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed reporter deposition fluorescence in situ hybridization with domain-specific probes showed that Bacteria (>98%) dominated over Archaea (<2%) at both sites, important differences were detected at the class and genus levels, reflecting differences in pH, redox potential, and heavy metal concentrations. At SN, where the pH and redox potential are similar to that of the water column (pH 2.5 and +400 mV), the most abundant organisms were identified as iron-reducing bacteria: Acidithiobacillus spp. and Acidiphilium spp., probably related to the higher iron solubility at low pH. At the JL dam, characterized by a banded sediment with higher pH (4.2 to 6.2), more reducing redox potential (-210 mV to 50 mV), and a lower solubility of iron, members of sulfate-reducing genera Syntrophobacter, Desulfosporosinus, and Desulfurella were dominant. The latter was quantified with a newly designed CARD-FISH probe. In layers where sulfate-reducing bacteria were abundant, pH was higher and redox potential and levels of dissolved metals and iron were lower. These results suggest that the attenuation of ARD characteristics is biologically driven by sulfate reducers and the consequent precipitation of metals and iron as sulfides.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biota , Sedimentos Geológicos/microbiologia , Sulfatos/metabolismo , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Água Doce/química , Água Doce/microbiologia , Concentração de Íons de Hidrogênio , Hibridização in Situ Fluorescente , Metais Pesados/análise , Oxirredução , Rios , Espanha
13.
Nature ; 443(7113): 854-8, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17051217

RESUMO

Mud volcanism is an important natural source of the greenhouse gas methane to the hydrosphere and atmosphere. Recent investigations show that the number of active submarine mud volcanoes might be much higher than anticipated (for example, see refs 3-5), and that gas emitted from deep-sea seeps might reach the upper mixed ocean. Unfortunately, global methane emission from active submarine mud volcanoes cannot be quantified because their number and gas release are unknown. It is also unclear how efficiently methane-oxidizing microorganisms remove methane. Here we investigate the methane-emitting Haakon Mosby Mud Volcano (HMMV, Barents Sea, 72 degrees N, 14 degrees 44' E; 1,250 m water depth) to provide quantitative estimates of the in situ composition, distribution and activity of methanotrophs in relation to gas emission. The HMMV hosts three key communities: aerobic methanotrophic bacteria (Methylococcales), anaerobic methanotrophic archaea (ANME-2) thriving below siboglinid tubeworms, and a previously undescribed clade of archaea (ANME-3) associated with bacterial mats. We found that the upward flow of sulphate- and oxygen-free mud volcano fluids restricts the availability of these electron acceptors for methane oxidation, and hence the habitat range of methanotrophs. This mechanism limits the capacity of the microbial methane filter at active marine mud volcanoes to <40% of the total flux.


Assuntos
Sedimentos Geológicos/microbiologia , Metano/metabolismo , Água do Mar/microbiologia , Erupções Vulcânicas/análise , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Dados de Sequência Molecular , Oceanos e Mares , Água do Mar/química , Sulfatos/metabolismo
14.
Environ Microbiol ; 13(2): 495-505, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20946529

RESUMO

A mat-forming population of the giant sulfur bacterium Thiomargarita was discovered at the flank of the mud volcano Amon on the Nile Deep Sea Fan in the Eastern Mediterranean Sea. All cells were of a spherical and vacuolated phenotype and internally stored globules of elemental sulfur. With a diameter of 24-65 µm, Thiomargarita cells from the Eastern Mediterranean were substantially smaller than cells of previously described populations. A 16S rRNA gene fragment was amplified and could be assigned to the Thiomargarita-resembling cells by fluorescence in situ hybridization. This sequence is monophyletic with published Thiomargarita sequences but sequence similarities are only about 94%, indicating a distinct diversification. In the investigated habitat, highly dynamic conditions favour Thiomargarita species over other sulfur-oxidizing bacteria. In contrast to Thiomargarita namibiensis populations, which rely on periodic resuspension from sulfidic sediment into the oxygenated water column, Thiomargarita cells at the Amon mud volcano seem to remain stationary at the sediment surface while environmental conditions change around them due to periodic brine flow.


Assuntos
Thiotrichaceae/classificação , Thiotrichaceae/crescimento & desenvolvimento , Microbiologia da Água , Ecossistema , Sedimentos Geológicos/microbiologia , Mar Mediterrâneo , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Enxofre , Thiotrichaceae/genética , Thiotrichaceae/isolamento & purificação
15.
Syst Appl Microbiol ; 44(4): 126218, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34111737

RESUMO

The new release of the All-Species Living Tree Project (LTP) represents an important step forward in the reconstruction of 16S rRNA gene phylogenies, since we not only provide an updated set of type strain sequences until December 2020, but also a series of improvements that increase the quality of the database. An improved universal alignment has been introduced that is implemented in the ARB format. In addition, all low-quality sequences present in the previous releases have been substituted by new entries with higher quality, many of them as a result of whole genome sequencing. Altogether, the improvements in the dataset and 16S rRNA sequence alignment allowed us to reconstruct robust phylogenies. The trees made available through this current LTP release feature the best topologies currently achievable. The given nomenclature and taxonomic hierarchy reflect all the changes available up to December 2020. The aim is to regularly update the validly published nomenclatural classification changes and new taxa proposals. The new release can be found at the following URL: https://imedea.uib-csic.es/mmg/ltp/.


Assuntos
Bactérias/classificação , Filogenia , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Terminologia como Assunto
16.
ISME Commun ; 1(1): 29, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36739458

RESUMO

Coastal sands are biocatalytic filters for dissolved and particulate organic matter of marine and terrestrial origin, thus, acting as centers of organic matter transformation. At high temporal resolution, we accessed the variability of benthic bacterial communities over two annual cycles at Helgoland (North Sea), and compared it with seasonality of communities in Isfjorden (Svalbard, 78°N) sediments, where primary production does not occur during winter. Benthic community structure remained stable in both, temperate and polar sediments on the level of cell counts and 16S rRNA-based taxonomy. Actinobacteriota of uncultured Actinomarinales and Microtrichales were a major group, with 8 ± 1% of total reads (Helgoland) and 31 ± 6% (Svalbard). Their high activity (frequency of dividing cells 28%) and in situ cell numbers of >10% of total microbes in Svalbard sediments, suggest Actinomarinales and Microtrichales as key heterotrophs for carbon mineralization. Even though Helgoland and Svalbard sampling sites showed no phytodetritus-driven changes of the benthic bacterial community structure, they harbored significantly different communities (p < 0.0001, r = 0.963). The temporal stability of benthic bacterial communities is in stark contrast to the dynamic succession typical of coastal waters, suggesting that pelagic and benthic bacterial communities respond to phytoplankton productivity very differently.

17.
Front Microbiol ; 12: 673553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220756

RESUMO

Plastic particles in the ocean are typically covered with microbial biofilms, but it remains unclear whether distinct microbial communities colonize different polymer types. In this study, we analyzed microbial communities forming biofilms on floating microplastics in a bay of the island of Elba in the Mediterranean Sea. Raman spectroscopy revealed that the plastic particles mainly comprised polyethylene (PE), polypropylene (PP), and polystyrene (PS) of which polyethylene and polypropylene particles were typically brittle and featured cracks. Fluorescence in situ hybridization and imaging by high-resolution microscopy revealed dense microbial biofilms on the polymer surfaces. Amplicon sequencing of the 16S rRNA gene showed that the bacterial communities on all plastic types consisted mainly of the orders Flavobacteriales, Rhodobacterales, Cytophagales, Rickettsiales, Alteromonadales, Chitinophagales, and Oceanospirillales. We found significant differences in the biofilm community composition on PE compared with PP and PS (on OTU and order level), which shows that different microbial communities colonize specific polymer types. Furthermore, the sequencing data also revealed a higher relative abundance of archaeal sequences on PS in comparison with PE or PP. We furthermore found a high occurrence, up to 17% of all sequences, of different hydrocarbon-degrading bacteria on all investigated plastic types. However, their functioning in the plastic-associated biofilm and potential role in plastic degradation needs further assessment.

18.
Environ Microbiol ; 12(8): 2327-40, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21966923

RESUMO

The anaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor is mediated by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Whereas three clades of ANME have been repeatedly studied with respect to phylogeny, key genes and genomic capabilities, little is known about their sulfate-reducing partner. In order to identify the partner of anaerobic methanotrophs of the ANME-2 clade, bacterial 16S rRNA gene libraries were constructed from cultures highly enriched for ANME-2a and ANME-2c in consortia with Deltaproteobacteria of the Desulfosarcina/Desulfococcus group (DSS). Phylogenetic analysis of those and publicly available sequences from AOM sites supported the hypothesis by Knittel and colleagues that the DSS partner belongs to the diverse SEEP-SRB1 cluster. Six subclusters of SEEP-SRB1, SEEP-SRB1a to SEEP-SRB1f, were proposed and specific oligonucleotide probes were designed. Using fluorescence in situ hybridization on samples from six different AOM sites, SEEP-SRB1a was identified as sulfate-reducing partner in up to 95% of total ANME-2 consortia. SEEP-SRB1a cells exhibited a rod-shaped, vibrioid, or coccoid morphology and were found to be associated with subgroups ANME-2a and ANME-2c. Moreover, SEEP-SRB1a was also detected in 8% to 23% of ANME-3 consortia in Haakon Mosby Mud Volcano sediments, previously described to be predominantly associated with SRB of the Desulfobulbus group. SEEP-SRB1a contributed to only 0.3% to 0.7% of all single cells in almost all samples indicating that these bacteria are highly adapted to a symbiotic relationship with ANME-2.


Assuntos
Metano/metabolismo , Consórcios Microbianos , Filogenia , Bactérias Redutoras de Enxofre/classificação , Anaerobiose , DNA Bacteriano/genética , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Biblioteca Gênica , Sedimentos Geológicos/microbiologia , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Oxirredução , RNA Ribossômico 16S/genética , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/metabolismo , Simbiose
19.
ISME J ; 14(4): 1042-1056, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31988474

RESUMO

Surveys of 16S rRNA gene sequences derived from marine sediments have indicated that a widely distributed group of Gammaproteobacteria, named "JTB255-Marine Benthic Group" (now the candidate order Woeseiales), accounts for 1-22% of the retrieved sequences. Despite their ubiquity in seafloor communities, little is known about their distribution and specific ecological niches in the deep sea, which constitutes the largest biome globally. Here, we characterized the phylogeny, environmental distribution patterns, abundance, and metabolic potential of Woeseiales bacteria with a focus on representatives from the deep sea. From a phylogenetic analysis of publicly available 16S rRNA gene sequences (≥1400 bp, n = 994), we identified lineages of Woeseiales with greater prevalence in the deep sea than in coastal environments, a pattern corroborated by the distribution of 16S oligotypes recovered from 28 globally distributed sediment samples. Cell counts revealed that Woeseiales bacteria accounted for 5 ± 2% of all microbial cells in deep-sea surface sediments at 23 globally distributed sites. Comparative analyses of a genome, metagenome bins, and single-cell genomes suggested that members of the corresponding clades are likely to grow on proteinaceous matter, potentially derived from detrital cell membranes, cell walls, and other organic remnants in marine sediments.


Assuntos
Gammaproteobacteria/fisiologia , Sedimentos Geológicos/microbiologia , Bactérias/genética , Gammaproteobacteria/metabolismo , Variação Genética , Metagenoma , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
mBio ; 11(2)2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317322

RESUMO

Cold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of California) and ethane as the substrate, we cultured microbial consortia of a novel anaerobic ethane oxidizer, "Candidatus Ethanoperedens thermophilum" (GoM-Arc1 clade), and its partner bacterium "Candidatus Desulfofervidus auxilii," previously known from methane-oxidizing consortia. The sulfate reduction activity of the culture doubled within one week, indicating a much faster growth than in any other alkane-oxidizing archaea described before. The dominance of a single archaeal phylotype in this culture allowed retrieval of a closed genome of "Ca. Ethanoperedens," a sister genus of the recently reported ethane oxidizer "Candidatus Argoarchaeum." The metagenome-assembled genome of "Ca. Ethanoperedens" encoded a complete methanogenesis pathway including a methyl-coenzyme M reductase (MCR) that is highly divergent from those of methanogens and methanotrophs. Combined substrate and metabolite analysis showed ethane as the sole growth substrate and production of ethyl-coenzyme M as the activation product. Stable isotope probing demonstrated that the enzymatic mechanism of ethane oxidation in "Ca. Ethanoperedens" is fully reversible; thus, its enzymatic machinery has potential for the biotechnological development of microbial ethane production from carbon dioxide.IMPORTANCE In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing bacterium known to aid in methane oxidation and have retrieved the first complete genome of a short-chain alkane-degrading archaeon. This will greatly enhance the understanding of nonmethane alkane activation by noncanonical methyl-coenzyme M reductase enzymes and provide insights into additional metabolic steps and the mechanisms underlying syntrophic partnerships. Ultimately, this knowledge could lead to the biotechnological development of alkanogenic microorganisms to support the carbon neutrality of industrial processes.


Assuntos
Anaerobiose , Archaea/metabolismo , Etano/metabolismo , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biomarcadores , Metabolismo Energético , Genoma Arqueal , Genômica/métodos , Sedimentos Geológicos/microbiologia , Fontes Hidrotermais/microbiologia , Redes e Vias Metabólicas , Tipagem Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA