Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(2): 195-214, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736292

RESUMO

Evidence on the validity of drug targets from randomized trials is reliable but typically expensive and slow to obtain. In contrast, evidence from conventional observational epidemiological studies is less reliable because of the potential for bias from confounding and reverse causation. Mendelian randomization is a quasi-experimental approach analogous to a randomized trial that exploits naturally occurring randomization in the transmission of genetic variants. In Mendelian randomization, genetic variants that can be regarded as proxies for an intervention on the proposed drug target are leveraged as instrumental variables to investigate potential effects on biomarkers and disease outcomes in large-scale observational datasets. This approach can be implemented rapidly for a range of drug targets to provide evidence on their effects and thus inform on their priority for further investigation. In this review, we present statistical methods and their applications to showcase the diverse opportunities for applying Mendelian randomization in guiding clinical development efforts, thus enabling interventions to target the right mechanism in the right population group at the right time. These methods can inform investigators on the mechanisms underlying drug effects, their related biomarkers, implications for the timing of interventions, and the population subgroups that stand to gain the most benefit. Most methods can be implemented with publicly available data on summarized genetic associations with traits and diseases, meaning that the only major limitations to their usage are the availability of appropriately powered studies for the exposure and outcome and the existence of a suitable genetic proxy for the proposed intervention.


Assuntos
Descoberta de Drogas , Análise da Randomização Mendeliana , Humanos , Análise da Randomização Mendeliana/métodos , Causalidade , Biomarcadores , Viés
2.
Genet Epidemiol ; 48(4): 151-163, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38379245

RESUMO

Phenotypic heterogeneity at genomic loci encoding drug targets can be exploited by multivariable Mendelian randomization to provide insight into the pathways by which pharmacological interventions may affect disease risk. However, statistical inference in such investigations may be poor if overdispersion heterogeneity in measured genetic associations is unaccounted for. In this work, we first develop conditional F statistics for dimension-reduced genetic associations that enable more accurate measurement of phenotypic heterogeneity. We then develop a novel extension for two-sample multivariable Mendelian randomization that accounts for overdispersion heterogeneity in dimension-reduced genetic associations. Our empirical focus is to use genetic variants in the GLP1R gene region to understand the mechanism by which GLP1R agonism affects coronary artery disease (CAD) risk. Colocalization analyses indicate that distinct variants in the GLP1R gene region are associated with body mass index and type 2 diabetes (T2D). Multivariable Mendelian randomization analyses that were corrected for overdispersion heterogeneity suggest that bodyweight lowering rather than T2D liability lowering effects of GLP1R agonism are more likely contributing to reduced CAD risk. Tissue-specific analyses prioritized brain tissue as the most likely to be relevant for CAD risk, of the tissues considered. We hope the multivariable Mendelian randomization approach illustrated here is widely applicable to better understand mechanisms linking drug targets to diseases outcomes, and hence to guide drug development efforts.


Assuntos
Índice de Massa Corporal , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Análise da Randomização Mendeliana , Fenótipo , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
3.
Kidney Int ; 105(1): 132-149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38069998

RESUMO

Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos , Camundongos , Animais , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Diabetes Mellitus Experimental/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Inflamação
4.
Diabetologia ; 64(12): 2773-2778, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34505161

RESUMO

AIMS/HYPOTHESIS: The aim of this study was to leverage human genetic data to investigate the cardiometabolic effects of glucose-dependent insulinotropic polypeptide (GIP) signalling. METHODS: Data were obtained from summary statistics of large-scale genome-wide association studies. We examined whether genetic associations for type 2 diabetes liability in the GIP and GIPR genes co-localised with genetic associations for 11 cardiometabolic outcomes. For those outcomes that showed evidence of co-localisation (posterior probability >0.8), we performed Mendelian randomisation analyses to estimate the association of genetically proxied GIP signalling with risk of cardiometabolic outcomes, and to test whether this exceeded the estimate observed when considering type 2 diabetes liability variants from other regions of the genome. RESULTS: Evidence of co-localisation with genetic associations of type 2 diabetes liability at both the GIP and GIPR genes was observed for five outcomes. Mendelian randomisation analyses provided evidence for associations of lower genetically proxied type 2 diabetes liability at the GIP and GIPR genes with lower BMI (estimate in SD units -0.16, 95% CI -0.30, -0.02), C-reactive protein (-0.13, 95% CI -0.19, -0.08) and triacylglycerol levels (-0.17, 95% CI -0.22, -0.12), and higher HDL-cholesterol levels (0.19, 95% CI 0.14, 0.25). For all of these outcomes, the estimates were greater in magnitude than those observed when considering type 2 diabetes liability variants from other regions of the genome. CONCLUSIONS/INTERPRETATION: This study provides genetic evidence to support a beneficial role of sustained GIP signalling on cardiometabolic health greater than that expected from improved glycaemic control alone. Further clinical investigation is warranted. DATA AVAILABILITY: All data used in this study are publicly available. The scripts for the analysis are available at: https://github.com/vkarhune/GeneticallyProxiedGIP .


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Receptores dos Hormônios Gastrointestinais , Doenças Cardiovasculares/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Estudo de Associação Genômica Ampla , Glucose/metabolismo , Genética Humana , Humanos , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo
5.
Neuroendocrinology ; 111(10): 986-997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33152734

RESUMO

Glucagon-like peptide-1 (GLP-1) exerts its anorexigenic effect at least partly via the proopiomelanocortin (POMC) neurons of the arcuate (ARC) nucleus. These neurons are known to express GLP-1 receptor (GLP-1R). The aim of the study was to determine whether in addition to its direct effect, GLP-1 also modulates how neuronal inputs can regulate the POMC neurons by acting on presynaptic terminals, ultrastructural and electrophysiological studies were performed on tissues of adult male mice. GLP-1R-immunoreactivity was associated with the cell membrane of POMC neurons and with axon terminals forming synapses on these cells. The GLP-1 analog exendin 4 (Ex4) markedly increased the firing rate of all examined POMC neurons and depolarized these cells. These effects of Ex4 were prevented by intracellular administration of the G-protein blocker guanosine 5'-[ß-thio]diphosphate trilithium salt (GDP-ß-S). Ex4 also influenced the miniature postsynaptic currents (mPSCs) and evoked PSCs of POMC neurons. Ex4 increased the frequency of miniature excitatory PSCs (EPSCs) and the amplitude of the evoked EPSCs in half of the POMC neurons. Ex4 increased the frequency of miniature inhibitory PSCs (IPSCs) and the amplitudes of the evoked IPSCs in one-third of neurons. These effects of Ex4 were not influenced by intracellular GDP-ß-S, indicating that GLP-1 signaling directly stimulates a population of axon terminals innervating the POMC neurons. The different Ex4 responsiveness of their mPSCs indicates the heterogeneity of the POMC neurons of the ARC. In summary, our data demonstrate that in addition to its direct excitatory effect on the POMC neurons, GLP-1 signaling also facilitates the presynaptic input of these cells by acting on presynaptically localized GLP-1R.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Exenatida/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Neurônios/efeitos dos fármacos , Pró-Opiomelanocortina/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peptídeo 1 Semelhante ao Glucagon/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo
6.
JAMA ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297716

RESUMO

In this Viewpoint, 2024 Lasker-DeBakey Clinical Medical Research Award winner Lotte Bjerre Knudsen describes her discovery of glucagon-like peptide-1 for the treatment of patients with obesity.

7.
Endocrinology ; 165(9)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39045670

RESUMO

Classic hereditary hemochromatosis (HH) is an autosomal recessive iron-overload disorder resulting from loss-of-function mutations of the HFE gene. Patients with HH exhibit excessive hepatic iron accumulation that predisposes these patients to liver disease, including the risk for developing liver cancer. Chronic iron overload also poses a risk for the development of metabolic disorders such as obesity, type 2 diabetes, and insulin resistance. We hypothesized that liraglutide, GLP1 receptor agonist, alters iron metabolism while also reducing body weight and glucose tolerance in a mouse model of HH (global HFE knockout, HFE KO) and diet-induced obesity and glucose intolerance. The total body HFE KO and wild-type control mice were fed high-fat diet for 8 weeks. Mice were subdivided into liraglutide and vehicle-treated groups and received daily subcutaneous administration of the respective treatment once daily for 18 weeks. Liraglutide improved glucose tolerance and hepatic lipid markers and reduced body weight in a mouse model of HH, the HFE KO mouse, similar to wild-type controls. Importantly, our data show that liraglutide alters iron metabolism in HFE KO mice, leading to decreased circulating and stored iron levels in HFE KO mice. These observations highlight the potential that GLP1 receptor agonist could be used to reduce iron overload in addition to reducing body weight and improving glucose regulation in HH patients.


Assuntos
Modelos Animais de Doenças , Proteína da Hemocromatose , Hemocromatose , Homeostase , Ferro , Liraglutida , Camundongos Knockout , Animais , Hemocromatose/genética , Hemocromatose/metabolismo , Hemocromatose/tratamento farmacológico , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Ferro/metabolismo , Homeostase/efeitos dos fármacos , Camundongos , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/metabolismo , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/genética , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Obesidade/genética , Camundongos Endogâmicos C57BL , Peso Corporal/efeitos dos fármacos
8.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581939

RESUMO

The adipose-derived hormone leptin acts via its receptor (LepRb) in the brain to control energy balance. A potentially unidentified population of GABAergic hypothalamic LepRb neurons plays key roles in the restraint of food intake and body weight by leptin. To identify markers for candidate populations of LepRb neurons in an unbiased manner, we performed single-nucleus RNA-Seq of enriched mouse hypothalamic LepRb cells, identifying several previously unrecognized populations of hypothalamic LepRb neurons. Many of these populations displayed strong conservation across species, including GABAergic Glp1r-expressing LepRb (LepRbGlp1r) neurons, which expressed more Lepr than other LepRb cell populations. Ablating Lepr from LepRbGlp1r cells provoked hyperphagic obesity without impairing energy expenditure. Similarly, improvements in energy balance caused by Lepr reactivation in GABA neurons of otherwise Lepr-null mice required Lepr expression in GABAergic Glp1r-expressing neurons. Furthermore, restoration of Glp1r expression in LepRbGlp1r neurons in otherwise Glp1r-null mice enabled food intake suppression by the GLP1R agonist, liraglutide. Thus, the conserved GABAergic LepRbGlp1r neuron population plays crucial roles in the suppression of food intake by leptin and GLP1R agonists.


Assuntos
Leptina , Obesidade , Camundongos , Animais , Leptina/genética , Leptina/metabolismo , Obesidade/genética , Obesidade/prevenção & controle , Obesidade/metabolismo , Hipotálamo/metabolismo , Camundongos Knockout , Neurônios GABAérgicos/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Ingestão de Alimentos/genética
9.
Am J Physiol Endocrinol Metab ; 303(2): E253-64, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22589391

RESUMO

A possible association between glucagon-like peptide-1 (GLP-1) analogs and incidences of pancreatitis has been suggested based on clinical studies. In male and female diabetic Zucker diabetic fatty (ZDF) rats, we investigated the effects of continuous administration of liraglutide and exenatide on biochemical [lipase, pancreatic amylase (P-amylase)] and histopathological markers of pancreatitis. Male and female ZDF rats were dosed for 13 wk with liraglutide (0.4 or 1.0 mg·kg(-1)·day(-1) sc once daily) or exenatide (0.25 mg·kg(-1)·day(-1) sc, Alzet osmotic minipumps). P-amylase and lipase plasma activity were measured, and an extended histopathological and stereological (specific cell mass and proliferation rate) evaluation of the exocrine and the endocrine pancreas was performed. Expectedly, liraglutide and exenatide lowered blood glucose and Hb A(1c) in male and female ZDF rats, whereas ß-cell mass and proliferation rate were increased with greatly improved blood glucose control. Whereas neither analog affected lipase activity, small increases in P-amylase activity were observed in animals treated with liraglutide and exenatide. However, concurrent or permanent increases in lipase and P-amylase activity were never observed. Triglycerides were lowered by both GLP-1 analogs. The qualitative histopathological findings did not reveal adverse effects of liraglutide. The findings were mainly minimal in severity and focal in distribution. Similarly, the quantitative stereological analyses revealed no effects of liraglutide or exenatide on overall pancreas weight or exocrine and duct cell mass or proliferation. The present study demonstrates that, in overtly diabetic male and female ZDF rats, prolonged exposure to GLP-1 receptor agonists does not affect biochemical or histopathological markers of pancreatitis, and whereas both exenatide and liraglutide increase ß-cell mass, they have no effect on the exocrine pancreas. However, clinical outcome studies and studies using primate tissues and/or studies in nonhuman primates are needed to further assess human risk.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Hipoglicemiantes/efeitos adversos , Pâncreas/efeitos dos fármacos , Pancreatite/induzido quimicamente , Animais , Glicemia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Exenatida , Feminino , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/efeitos adversos , Hemoglobinas Glicadas/análise , Hipoglicemiantes/administração & dosagem , Lipase/sangue , Liraglutida , Masculino , Pâncreas/patologia , alfa-Amilases Pancreáticas/sangue , Pancreatite/patologia , Peptídeos/administração & dosagem , Peptídeos/efeitos adversos , Ratos , Ratos Zucker , Peçonhas/administração & dosagem , Peçonhas/efeitos adversos
10.
Alzheimers Dement (N Y) ; 8(1): e12268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35229024

RESUMO

INTRODUCTION: People with type 2 diabetes have increased risk of dementia. Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) are among the promising therapies for repurposing as a treatment for Alzheimer's disease; a key unanswered question is whether they reduce dementia incidence in people with type 2 diabetes. METHODS: We assessed exposure to GLP-1 RAs in patients with type 2 diabetes and subsequent diagnosis of dementia in two large data sources with long-term follow-up: pooled data from three randomized double-blind placebo-controlled cardiovascular outcome trials (15,820 patients) and a nationwide Danish registry-based cohort (120,054 patients). RESULTS: Dementia rate was lower both in patients randomized to GLP-1 RAs versus placebo (hazard ratio [HR]: 0.47 (95% confidence interval [CI]: 0.25-0.86) and in the nationwide cohort (HR: 0.89; 95% CI: 0.86-0.93 with yearly increased exposure to GLP-1 RAs). DISCUSSION: Treatment with GLP-1 RAs may provide a new opportunity to reduce the incidence of dementia in patients with type 2 diabetes.

11.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662392

RESUMO

Therapies based on glucagon-like peptide-1 receptor (GLP-1R) agonism are highly effective in treating type 2 diabetes and obesity, but the localization of GLP-1Rs mediating the antidiabetic and other possible actions of GLP-1 is still debated. The purpose with this study was to identify sites of GLP-1R mRNA and protein expression in the mouse gastrointestinal system by means of GLP-1R antibody immunohistochemistry, Glp1r mRNA fluorescence in situ hybridization, and 125I-exendin (9-39) autoradiography. As expected, GLP-1R staining was observed in almost all ß-cells in the pancreatic islets, but more rarely in α- and δ-cells. In the stomach, GLP-1R staining was found exclusively in the gastric corpus mucous neck cells, known to protect the stomach mucosa. The Brunner glands were strongly stained for GLP-1R, and pretreatment with GLP-1 agonist exendin-4 caused internalization of the receptor and mucin secretion, while pretreatment with phosphate-buffered saline or antagonist exendin (9-39) did not. In the intestinal mucosa, GLP-1R staining was observed in intraepithelial lymphocytes, lamina propria lymphocytes, and enteroendocrine cells containing secretin, peptide YY, and somatostatin, but not cholecystokinin. GLP-1R staining was seen in nerve fibers within the choline acetyl transferase- and nitric oxide-positive myenteric plexuses from the gastric corpus to the distal large intestine being strongest in the mid- and hindgut area. Finally, intraperitoneal administration of radiolabeled exendin (9-39) strongly labeled myenteric fibers. In conclusion, this study expands our knowledge of GLP-1R localization and suggests that GLP-1 may serve an important role in modulating gastrointestinal health and mucosal protection.


Assuntos
Trato Gastrointestinal/metabolismo , Perfilação da Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/biossíntese , Pâncreas/metabolismo , Animais , Autorradiografia , Ligação Competitiva , Glândulas Duodenais/metabolismo , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/fisiologia , Feminino , Mucosa Gástrica/metabolismo , Hibridização In Situ , Mucosa Intestinal/metabolismo , Ilhotas Pancreáticas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Atheroscler Plus ; 49: 32-41, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36644202

RESUMO

Background and aims: Randomized clinical studies have shown a reduction in cardiovascular outcomes with glucagon-like peptide 1 receptor agonist (GLP-1RA) treatment with the hypothesized mechanisms being an underlying effect on atherosclerosis. Here, we aimed to assess the pharmacological effects of semaglutide in an atheroprone murine model that recapitulates central mechanisms related to vascular smooth muscle cell (VSMC) phenotypic switching and endothelial dysfunction known to operate within the atherosclerotic plaque. Methods: In study A, we employed an electrical current to the carotid artery in ApoE-/- mice to induce severe VSMC injury and death, after which the arteries were allowed to heal for 4 weeks. In study B, a constrictive cuff was added for 6 h at the site of the healed segment to induce a disturbance in blood flow. Results: Compared to vehicle, semaglutide treatment reduced the intimal and medial area by ∼66% (p = 0.007) and ∼11% (p = 0.0002), respectively. Following cuff placement, expression of the pro-inflammatory marker osteopontin and macrophage marker Mac-2 was reduced (p < 0.05) in the semaglutide-treated group compared to vehicle. GLP-1R were not expressed in murine carotid artery and human coronary vessels with and without atherosclerotic plaques, and semaglutide treatment did not affect proliferation of cultured primary human VSMCs. Conclusions: Semaglutide treatment reduced vessel remodelling following electrical injury and blood flow perturbation in an atheroprone mouse model. This effect appears to be driven by anti-inflammatory and -proliferative mechanisms independent of GLP-1 receptor-mediated signalling in the resident vascular cells. This mechanism of action may be important for cardiovascular protection.

13.
J Biol Chem ; 285(1): 723-30, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19861722

RESUMO

GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic beta-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9-39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Aresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous alpha-helix from Thr(13) to Val(33) when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor.


Assuntos
Espaço Extracelular/metabolismo , Peptídeo 1 Semelhante ao Glucagon/química , Receptores de Glucagon/química , Sequência de Aminoácidos , Linhagem Celular , Cristalografia por Raios X , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Glucagon/metabolismo , Soluções
14.
Pharmacology ; 88(5-6): 340-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22134089

RESUMO

Glucagon-like peptide-1 (GLP-1) activates the GLP-1 receptor (GLP-1R), which belongs to family B of the G-protein-coupled receptors. We previously identified a selective small molecule ligand, compound 2, that acted as a full agonist and allosteric modulator of GLP-1R. In this study, the structurally related small molecule, compound 3, stimulated cAMP production from GLP-1R, but not from the homologous glucagon receptor (GluR). The receptor selectivity encouraged a chimeric receptor approach to identify domains important for compound 3-mediated activation of GLP-1R. A subsegment of the GLP-1R transmembrane domain containing TM2 to TM5 was sufficient to transfer compound 3 responsiveness to GluR. Therefore, divergent residues in this subsegment of GLP-1R and GluR are responsible for the receptor selectivity of compound 3. Functional analyses of other chimeric receptors suggested that the existence of a helix-helix interface between TM1 and TM7 is important for the compound 3 response. Furthermore, site-directed mutagenesis revealed that a Phe195-Leu substitution in TM2 and a Thr391-Ala substitution in TM7 increased and decreased the efficacy of compound 3 without disturbing the potency or efficacy of GLP-1. Collectively, differential effects of receptor mutations suggest that TM2 and/or TM7 are important for compound 3-mediated activation of GLP-1R.


Assuntos
Receptores de Glucagon/agonistas , Receptores de Glucagon/química , AMP Cíclico/metabolismo , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Fragmentos de Peptídeos/metabolismo , Estrutura Secundária de Proteína , Receptores de Glucagon/metabolismo
15.
Endocrinol Diabetes Metab ; 4(3): e00234, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34277961

RESUMO

The GLP-1 receptor (GLP-1R) in the kidney is expressed exclusively in vascular smooth muscle cells in arteries and arterioles. Downstream effects of the activation of the renal vascular GLP-1R are elusive but may involve regulation of the renin-angiotensin-aldosterone system (RAAS). The expression of Ren1 in the mouse renal vasculature was investigated by in situ hybridization after a single subcutaneous dose of liraglutide, semaglutide and after repeated injections of liraglutide. Single and repeated exposure to GLP-1R agonists induced expression of Ren1 in the renal vascular smooth muscle cell compartment compared with vehicle injected controls (p < .0001) for both semaglutide and liraglutide. The present data show a robust induction of Ren1 expression in the vascular smooth muscle cells of the kidney after single and repeated GLP-1R activation and this renin recruitment may be involved in the effects of GLP-1R agonist treatment on kidney disease.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Liraglutida , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Rim/metabolismo , Liraglutida/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Camundongos , Renina/metabolismo , Renina/farmacologia , Sistema Renina-Angiotensina
16.
Mol Metab ; 53: 101240, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33962048

RESUMO

OBJECTIVE: The area postrema (AP) and nucleus tractus solitarius (NTS) located in the hindbrain are key nuclei that sense and integrate peripheral nutritional signals and consequently regulate feeding behaviour. While single-cell transcriptomics have been used in mice to reveal the gene expression profile and heterogeneity of key hypothalamic populations, similar in-depth studies have not yet been performed in the hindbrain. METHODS: Using single-nucleus RNA sequencing, we provide a detailed survey of 16,034 cells within the AP and NTS of mice in the fed and fasted states. RESULTS: Of these, 8,910 were neurons that group into 30 clusters, with 4,289 from mice fed ad libitum and 4,621 from overnight fasted mice. A total of 7,124 nuclei were from non-neuronal cells, including oligodendrocytes, astrocytes, and microglia. Interestingly, we identified that the oligodendrocyte population was particularly transcriptionally sensitive to an overnight fast. The receptors GLP1R, GIPR, GFRAL, and CALCR, which bind GLP1, GIP, GDF15, and amylin, respectively, are all expressed in the hindbrain and are major targets for anti-obesity therapeutics. We characterise the transcriptomes of these four populations and show that their gene expression profiles are not dramatically altered by an overnight fast. Notably, we find that roughly half of cells that express GIPR are oligodendrocytes. Additionally, we profile POMC-expressing neurons within the hindbrain and demonstrate that 84% of POMC neurons express either PCSK1, PSCK2, or both, implying that melanocortin peptides are likely produced by these neurons. CONCLUSION: We provide a detailed single-cell level characterisation of AP and NTS cells expressing receptors for key anti-obesity drugs that are either already approved for human use or in clinical trials. This resource will help delineate the mechanisms underlying the effectiveness of these compounds and also prove useful in the continued search for other novel therapeutic targets.


Assuntos
Ingestão de Alimentos , Jejum , Pró-Proteína Convertase 1/genética , Pró-Proteína Convertase 2/genética , Rombencéfalo/metabolismo , Animais , Área Postrema/metabolismo , Comportamento Alimentar , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Pró-Proteína Convertase 1/metabolismo , Pró-Proteína Convertase 2/metabolismo , Análise de Sequência de RNA , Núcleo Solitário/metabolismo
17.
Brain Struct Funct ; 226(1): 225-245, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33341919

RESUMO

Glucagon-like peptide-1 (GLP-1) inhibits food intake and regulates glucose homeostasis. These actions are at least partly mediated by central GLP-1 receptor (GLP-1R). Little information is available, however, about the subcellular localization and the distribution of the GLP-1R protein in the rat brain. To determine the localization of GLP-1R protein in the rat brain, immunocytochemistry was performed at light and electron microscopic levels. The highest density of GLP-1R-immunoreactivity was observed in the circumventricular organs and regions in the vicinity of these areas like in the arcuate nucleus (ARC) and in the nucleus tractus solitarii (NTS). In addition, GLP-1R-immunreactive (IR) neuronal profiles were also observed in a number of telencephalic, diencephalic and brainstem areas and also in the cerebellum. Ultrastructural examination of GLP-1R-immunoreactivity in energy homeostasis related regions showed that GLP-1R immunoreactivity is associated with the membrane of perikarya and dendrites but GLP-1R can also be observed inside and on the surface of axon varicosities and axon terminals. In conclusion, in this study we provide a detailed map of the GLP-1R-IR structures in the CNS. Furthermore, we demonstrate that in addition to the perikaryonal and dendritic distribution, GLP-1R is also present in axonal profiles suggesting a presynaptic action of GLP-1. The very high concentration of GLP-1R-profiles in the circumventricular organs and in the ARC and NTS suggests that peripheral GLP-1 may influence brain functions via these brain areas.


Assuntos
Encéfalo/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/ultraestrutura , Imuno-Histoquímica , Masculino , Neurônios/ultraestrutura , Ratos , Ratos Sprague-Dawley
18.
Nat Metab ; 3(4): 530-545, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33767443

RESUMO

The brainstem dorsal vagal complex (DVC) is known to regulate energy balance and is the target of appetite-suppressing hormones, such as glucagon-like peptide 1 (GLP-1). Here we provide a comprehensive genetic map of the DVC and identify neuronal populations that control feeding. Combining bulk and single-nucleus gene expression and chromatin profiling of DVC cells, we reveal 25 neuronal populations with unique transcriptional and chromatin accessibility landscapes and peptide receptor expression profiles. GLP-1 receptor (GLP-1R) agonist administration induces gene expression alterations specific to two distinct sets of Glp1r neurons-one population in the area postrema and one in the nucleus of the solitary tract that also expresses calcitonin receptor (Calcr). Transcripts and regions of accessible chromatin near obesity-associated genetic variants are enriched in the area postrema and the nucleus of the solitary tract neurons that express Glp1r and/or Calcr, and activating several of these neuronal populations decreases feeding in rodents. Thus, DVC neuronal populations associated with obesity predisposition suppress feeding and may represent therapeutic targets for obesity.


Assuntos
Mapeamento Cromossômico , Obesidade/genética , Obesidade/fisiopatologia , Nervo Vago/fisiopatologia , Animais , Apetite/genética , Peso Corporal/genética , Tronco Encefálico/fisiopatologia , Proteína Semelhante a Receptor de Calcitonina/genética , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios , Núcleo Solitário/fisiologia
19.
JCI Insight ; 5(6)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32213703

RESUMO

Semaglutide, a glucagon-like peptide 1 (GLP-1) analog, induces weight loss, lowers glucose levels, and reduces cardiovascular risk in patients with diabetes. Mechanistic preclinical studies suggest weight loss is mediated through GLP-1 receptors (GLP-1Rs) in the brain. The findings presented here show that semaglutide modulated food preference, reduced food intake, and caused weight loss without decreasing energy expenditure. Semaglutide directly accessed the brainstem, septal nucleus, and hypothalamus but did not cross the blood-brain barrier; it interacted with the brain through the circumventricular organs and several select sites adjacent to the ventricles. Semaglutide induced central c-Fos activation in 10 brain areas, including hindbrain areas directly targeted by semaglutide, and secondary areas without direct GLP-1R interaction, such as the lateral parabrachial nucleus. Automated analysis of semaglutide access, c-Fos activity, GLP-1R distribution, and brain connectivity revealed that activation may involve meal termination controlled by neurons in the lateral parabrachial nucleus. Transcriptomic analysis of microdissected brain areas from semaglutide-treated rats showed upregulation of prolactin-releasing hormone and tyrosine hydroxylase in the area postrema. We suggest semaglutide lowers body weight by direct interaction with diverse GLP-1R populations and by directly and indirectly affecting the activity of neural pathways involved in food intake, reward, and energy expenditure.


Assuntos
Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Peptídeos Semelhantes ao Glucagon/farmacologia , Vias Neurais/efeitos dos fármacos , Animais , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/efeitos dos fármacos , Camundongos , Ratos
20.
ACS Pharmacol Transl Sci ; 2(6): 468-484, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-32259078

RESUMO

Glucagon-like peptide-1 (GLP-1) has been in focus since the early 1980s as a long looked for incretin hormone, released from the gastrointestinal tract and with an important effect on glucose-dependent insulin secretion, providing efficient glucose lowering, with little risk for hypoglycemia. The enzyme dipeptidyl peptidase-4 (DPP-4) degrades GLP-1 very fast, and the remaining metabolite is cleared rapidly by the kidneys. Liraglutide is a fatty acid acylated analogue of GLP-1 that provides efficacy for 24 h/day. The mechanism of action for liraglutide is reviewed in detail with focus on pancreatic efficacy and safety, thyroid safety, and weight loss mechanism. Evolving science hypothesizes that GLP-1 has important effects on atherosclerosis, relevant for the cardiovascular benefit seen in the treatment of diabetes and obesity. Also, GLP-1 may be relevant in neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA