Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(47): e2300308120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37976261

RESUMO

Spinal muscular atrophy (SMA), the top genetic cause of infant mortality, is characterized by motor neuron degeneration. Mechanisms underlying SMA pathogenesis remain largely unknown. Here, we report that the activity of cyclin-dependent kinase 5 (Cdk5) and the conversion of its activating subunit p35 to the more potent activator p25 are significantly up-regulated in mouse models and human induced pluripotent stem cell (iPSC) models of SMA. The increase of Cdk5 activity occurs before the onset of SMA phenotypes, suggesting that it may be an initiator of the disease. Importantly, aberrant Cdk5 activation causes mitochondrial defects and motor neuron degeneration, as the genetic knockout of p35 in an SMA mouse model rescues mitochondrial transport and fragmentation defects, and alleviates SMA phenotypes including motor neuron hyperexcitability, loss of excitatory synapses, neuromuscular junction denervation, and motor neuron degeneration. Inhibition of the Cdk5 signaling pathway reduces the degeneration of motor neurons derived from SMA mice and human SMA iPSCs. Altogether, our studies reveal a critical role for the aberrant activation of Cdk5 in SMA pathogenesis and suggest a potential target for therapeutic intervention.


Assuntos
Células-Tronco Pluripotentes Induzidas , Atrofia Muscular Espinal , Animais , Humanos , Camundongos , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/metabolismo , Degeneração Neural/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
2.
Hum Mol Genet ; 31(1): 82-96, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34368854

RESUMO

Spinal muscular atrophy (SMA) is caused by the loss of the survival motor neuron 1 (SMN1) gene function. The related SMN2 gene partially compensates but produces insufficient levels of SMN protein due to alternative splicing of exon 7. Evrysdi™ (risdiplam), recently approved for the treatment of SMA, and related compounds promote exon 7 inclusion to generate full-length SMN2 mRNA and increase SMN protein levels. SMNΔ7 type I SMA mice survive without treatment for ~17 days. SMN2 mRNA splicing modulators increase survival of SMN∆7 mice with treatment initiated at postnatal day 3 (PND3). To define SMN requirements for adult mice, SMNΔ7 mice were dosed with an SMN2 mRNA splicing modifier from PND3 to PND40, then dosing was stopped. Mice not treated after PND40 showed progressive weight loss, necrosis, and muscle atrophy after ~20 days. Male mice presented a more severe phenotype than female mice. Mice dosed continuously did not show disease symptoms. The estimated half-life of SMN protein is 2 days indicating that the SMA phenotype reappeared after SMN protein levels returned to baseline. Although SMN protein levels decreased with age in mice and SMN protein levels were higher in brain than in muscle, our studies suggest that SMN protein is required throughout the life of the mouse and is especially essential in adult peripheral tissues including muscle. These studies indicate that drugs such as risdiplam will be optimally therapeutic when given as early as possible after diagnosis and potentially will be required for the life of an SMA patient.


Assuntos
Atrofia Muscular Espinal , Processamento Alternativo , Animais , Modelos Animais de Doenças , Progressão da Doença , Éxons , Feminino , Humanos , Masculino , Camundongos , Atrofia Muscular Espinal/metabolismo , Splicing de RNA , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor
3.
Am J Hum Genet ; 104(4): 638-650, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30905397

RESUMO

Familial dysautonomia (FD) is a recessive neurodegenerative disease caused by a splice mutation in Elongator complex protein 1 (ELP1, also known as IKBKAP); this mutation leads to variable skipping of exon 20 and to a drastic reduction of ELP1 in the nervous system. Clinically, many of the debilitating aspects of the disease are related to a progressive loss of proprioception; this loss leads to severe gait ataxia, spinal deformities, and respiratory insufficiency due to neuromuscular incoordination. There is currently no effective treatment for FD, and the disease is ultimately fatal. The development of a drug that targets the underlying molecular defect provides hope that the drastic peripheral neurodegeneration characteristic of FD can be halted. We demonstrate herein that the FD mouse TgFD9;IkbkapΔ20/flox recapitulates the proprioceptive impairment observed in individuals with FD, and we provide the in vivo evidence that postnatal correction, promoted by the small molecule kinetin, of the mutant ELP1 splicing can rescue neurological phenotypes in FD. Daily administration of kinetin starting at birth improves sensory-motor coordination and prevents the onset of spinal abnormalities by stopping the loss of proprioceptive neurons. These phenotypic improvements correlate with increased amounts of full-length ELP1 mRNA and protein in multiple tissues, including in the peripheral nervous system (PNS). Our results show that postnatal correction of the underlying ELP1 splicing defect can rescue devastating disease phenotypes and is therefore a viable therapeutic approach for persons with FD.


Assuntos
Disautonomia Familiar/terapia , Cinetina/uso terapêutico , Propriocepção , Splicing de RNA , Fatores de Elongação da Transcrição/genética , Alelos , Animais , Comportamento Animal , Linhagem Celular , Cruzamentos Genéticos , Modelos Animais de Doenças , Disautonomia Familiar/genética , Éxons , Fibroblastos , Genótipo , Humanos , Íntrons , Cinetina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neurônios/metabolismo , Fenótipo
4.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360794

RESUMO

Spinal muscular atrophy (SMA) is a motor neuron disease caused by insufficient levels of the survival motor neuron (SMN) protein. One of the most prominent pathological characteristics of SMA involves defects of the neuromuscular junction (NMJ), such as denervation and reduced clustering of acetylcholine receptors (AChRs). Recent studies suggest that upregulation of agrin, a crucial NMJ organizer promoting AChR clustering, can improve NMJ innervation and reduce muscle atrophy in the delta7 mouse model of SMA. To test whether the muscle-specific kinase (MuSK), part of the agrin receptor complex, also plays a beneficial role in SMA, we treated the delta7 SMA mice with an agonist antibody to MuSK. MuSK agonist antibody #13, which binds to the NMJ, significantly improved innervation and synaptic efficacy in denervation-vulnerable muscles. MuSK agonist antibody #13 also significantly increased the muscle cross-sectional area and myofiber numbers in these denervation-vulnerable muscles but not in denervation-resistant muscles. Although MuSK agonist antibody #13 did not affect the body weight, our study suggests that preservation of NMJ innervation by the activation of MuSK may serve as a complementary therapy to SMN-enhancing drugs to maximize the therapeutic effectiveness for all types of SMA patients.


Assuntos
Neurônios Motores/enzimologia , Atrofia Muscular Espinal/enzimologia , Junção Neuromuscular/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Modelos Animais de Doenças , Ativação Enzimática , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Junção Neuromuscular/genética , Junção Neuromuscular/patologia , Receptores Proteína Tirosina Quinases/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
5.
Genes Dev ; 26(16): 1874-84, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22895255

RESUMO

Antisense oligonucleotides (ASOs) are versatile molecules that can be designed to specifically alter splicing patterns of target pre-mRNAs. Here we exploit this feature to phenocopy a genetic disease. Spinal muscular atrophy (SMA) is a motor neuron disease caused by loss-of-function mutations in the SMN1 gene. The related SMN2 gene expresses suboptimal levels of functional SMN protein due to alternative splicing that skips exon 7; correcting this defect-e.g., with ASOs-is a promising therapeutic approach. We describe the use of ASOs that exacerbate SMN2 missplicing and phenocopy SMA in a dose-dependent manner when administered to transgenic Smn(-/-) mice. Intracerebroventricular ASO injection in neonatal mice recapitulates SMA-like progressive motor dysfunction, growth impairment, and shortened life span, with α-motor neuron loss and abnormal neuromuscular junctions. These SMA-like phenotypes are prevented by a therapeutic ASO that restores correct SMN2 splicing. We uncovered starvation-induced splicing changes, particularly in SMN2, which likely accelerate disease progression. These results constitute proof of principle that ASOs designed to cause sustained splicing defects can be used to induce pathogenesis and rapidly and accurately model splicing-associated diseases in animals. This approach allows the dissection of pathogenesis mechanisms, including spatial and temporal features of disease onset and progression, as well as testing of candidate therapeutics.


Assuntos
Técnicas Genéticas , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Animais , Terapia Genética , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/mortalidade , Atrofia Muscular Espinal/patologia , Oligonucleotídeos Antissenso , Splicing de RNA/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
6.
Hum Mol Genet ; 25(5): 964-75, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26758873

RESUMO

Spinal muscular atrophy (SMA) is a genetic disease characterized by atrophy of muscle and loss of spinal motor neurons. SMA is caused by deletion or mutation of the survival motor neuron 1 (SMN1) gene, and the nearly identical SMN2 gene fails to generate adequate levels of functional SMN protein due to a splicing defect. Currently, several therapeutics targeted to increase SMN protein are in clinical trials. An outstanding issue in the field is whether initiating treatment in symptomatic older patients would confer a therapeutic benefit, an important consideration as the majority of patients with milder forms of SMA are diagnosed at an older age. An SMA mouse model that recapitulates the disease phenotype observed in adolescent and adult SMA patients is needed to address this important question. We demonstrate here that Δ7 mice, a model of severe SMA, treated with a suboptimal dose of an SMN2 splicing modifier show increased SMN protein, survive into adulthood and display SMA disease-relevant pathologies. Increasing the dose of the splicing modifier after the disease symptoms are apparent further mitigates SMA histopathological features in suboptimally dosed adult Δ7 mice. In addition, inhibiting myostatin using intramuscular injection of AAV1-follistatin ameliorates muscle atrophy in suboptimally dosed Δ7 mice. Taken together, we have developed a new murine model of symptomatic SMA in adolescents and adult mice that is induced pharmacologically from a more severe model and demonstrated efficacy of both SMN2 splicing modifiers and a myostatin inhibitor in mice at later disease stages.


Assuntos
Folistatina/farmacologia , Fatores Imunológicos/farmacologia , Atrofia Muscular Espinal/tratamento farmacológico , Splicing de RNA/efeitos dos fármacos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/agonistas , Adolescente , Adulto , Idade de Início , Animais , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Deleção de Genes , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Camundongos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Miostatina/antagonistas & inibidores , Miostatina/genética , Miostatina/metabolismo , Fenótipo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
8.
Hum Mol Genet ; 25(10): 1885-1899, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26931466

RESUMO

Spinal muscular atrophy (SMA) is caused by the loss or mutation of both copies of the survival motor neuron 1 (SMN1) gene. The related SMN2 gene is retained, but due to alternative splicing of exon 7, produces insufficient levels of the SMN protein. Here, we systematically characterize the pharmacokinetic and pharmacodynamics properties of the SMN splicing modifier SMN-C1. SMN-C1 is a low-molecular weight compound that promotes the inclusion of exon 7 and increases production of SMN protein in human cells and in two transgenic mouse models of SMA. Furthermore, increases in SMN protein levels in peripheral blood mononuclear cells and skin correlate with those in the central nervous system (CNS), indicating that a change of these levels in blood or skin can be used as a non-invasive surrogate to monitor increases of SMN protein levels in the CNS. Consistent with restored SMN function, SMN-C1 treatment increases the levels of spliceosomal and U7 small-nuclear RNAs and corrects RNA processing defects induced by SMN deficiency in the spinal cord of SMNΔ7 SMA mice. A 100% or greater increase in SMN protein in the CNS of SMNΔ7 SMA mice robustly improves the phenotype. Importantly, a ∼50% increase in SMN leads to long-term survival, but the SMA phenotype is only partially corrected, indicating that certain SMA disease manifestations may respond to treatment at lower doses. Overall, we provide important insights for the translation of pre-clinical data to the clinic and further therapeutic development of this series of molecules for SMA treatment.


Assuntos
Isocumarinas/administração & dosagem , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Piperazinas/administração & dosagem , Bibliotecas de Moléculas Pequenas/farmacocinética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Éxons/genética , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/sangue , Atrofia Muscular Espinal/patologia , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , Pele/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Proteína 2 de Sobrevivência do Neurônio Motor/sangue
9.
J Neurosci ; 36(8): 2543-53, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911699

RESUMO

Spinal muscular atrophy (SMA) is a motoneuron disease caused by loss or mutation in Survival of Motor Neuron 1 (SMN1) gene. Recent studies have shown that selective restoration of SMN protein in astrocytes partially alleviates pathology in an SMA mouse model, suggesting important roles for astrocytes in SMA. Addressing these underlying mechanisms may provide new therapeutic avenues to fight SMA. Using primary cultures of pure motoneurons or astrocytes from SMNΔ7 (SMA) and wild-type (WT) mice, as well as their mixed and matched cocultures, we characterized the contributions of motoneurons, astrocytes, and their interactions to synapse loss in SMA. In pure motoneuron cultures, SMA motoneurons exhibited normal survival but intrinsic defects in synapse formation and synaptic transmission. In pure astrocyte cultures, SMA astrocytes exhibited defects in calcium homeostasis. In motoneuron-astrocyte contact cocultures, synapse formation and synaptic transmission were significantly reduced when either motoneurons, astrocytes or both were from SMA mice compared with those in WT motoneurons cocultured with WT astrocytes. The reduced synaptic activity is unlikely due to changes in motoneuron excitability. This disruption in synapse formation and synaptic transmission by SMN deficiency was not detected in motoneuron-astrocyte noncontact cocultures. Additionally, we observed a downregulation of Ephrin B2 in SMA astrocytes. These findings suggest that there are both cell autonomous and non-cell-autonomous defects in SMA motoneurons and astrocytes. Defects in contact interactions between SMA motoneurons and astrocytes impair synaptogenesis seen in SMA pathology, possibly due to the disruption of the Ephrin B2 pathway.


Assuntos
Astrócitos/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/metabolismo , Animais , Astrócitos/patologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Medula Espinal/patologia
10.
Hum Mol Genet ; 24(14): 4094-102, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25911676

RESUMO

Systemically low levels of survival motor neuron-1 (SMN1) protein cause spinal muscular atrophy (SMA). α-Motor neurons of the spinal cord are considered particularly vulnerable in this genetic disorder and their dysfunction and loss cause progressive muscle weakness, paralysis and eventually premature death of afflicted individuals. Historically, SMA was therefore considered a motor neuron-autonomous disease. However, depletion of SMN in motor neurons of normal mice elicited only a very mild phenotype. Conversely, restoration of SMN to motor neurons in an SMA mouse model had only modest effects on the SMA phenotype and survival. Collectively, these results suggested that additional cell types contribute to the pathogenesis of SMA, and understanding the non-autonomous requirements is crucial for developing effective therapies. Astrocytes are critical for regulating synapse formation and function as well as metabolic support for neurons. We hypothesized that astrocyte functions are disrupted in SMA, exacerbating disease progression. Using viral-based restoration of SMN specifically to astrocytes, survival in severe and intermediate SMA mice was observed. In addition, neuromuscular circuitry was improved. Astrogliosis was prominent in end-stage SMA mice and in post-mortem patient spinal cords. Increased expression of proinflammatory cytokines was partially normalized in treated mice, suggesting that astrocytes contribute to the pathogenesis of SMA.


Assuntos
Astrócitos/citologia , Astrócitos/metabolismo , Atrofia Muscular Espinal/patologia , Animais , Diferenciação Celular , Dependovirus/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Vetores Genéticos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Fenótipo , Medula Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
11.
Mol Ther ; 24(9): 1592-601, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27401142

RESUMO

Loss of Survival Motor Neuron-1 (SMN1) causes Spinal Muscular Atrophy, a devastating neurodegenerative disease. SMN2 is a nearly identical copy gene; however SMN2 cannot prevent disease development in the absence of SMN1 since the majority of SMN2-derived transcripts are alternatively spliced, encoding a truncated, unstable protein lacking exon 7. Nevertheless, SMN2 retains the ability to produce low levels of functional protein. Previously we have described a splice-switching Morpholino antisense oligonucleotide (ASO) sequence that targets a potent intronic repressor, Element1 (E1), located upstream of SMN2 exon 7. In this study, we have assessed a novel panel of Morpholino ASOs with the goal of optimizing E1 ASO activity. Screening for efficacy in the SMNΔ7 mouse model, a single ASO variant was more active in vivo compared with the original E1(MO)-ASO. Sequence variant eleven (E1(MOv11)) consistently showed greater efficacy by increasing the lifespan of severe Spinal Muscular Atrophy mice after a single intracerebroventricular injection in the central nervous system, exhibited a strong dose-response across an order of magnitude, and demonstrated excellent target engagement by partially reversing the pathogenic SMN2 splicing event. We conclude that Morpholino modified ASOs are effective in modifying SMN2 splicing and have the potential for future Spinal Muscular Atrophy clinical applications.


Assuntos
Íntrons , Morfolinos/genética , Atrofia Muscular Espinal/genética , Elementos de Resposta , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Marcação de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Knockout , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/mortalidade , Mutação , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Transcrição Gênica
12.
Mol Ther ; 24(5): 855-66, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26860981

RESUMO

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive disease occurring during childhood. The gene responsible for disease development is a ubiquitously expressed protein, IGHMBP2. Mutations in IGHMBP2 result in the loss of α-motor neurons leading to muscle atrophy in the distal limbs accompanied by respiratory complications. Although genetically and clinically distinct, proximal SMA is also caused by the loss of a ubiquitously expressed gene (SMN). Significant preclinical success has been achieved in proximal SMA using viral-based gene replacement strategies. We leveraged the technologies employed in SMA to demonstrate gene replacement efficacy in an SMARD1 animal model. Intracerebroventricular (ICV) injection of single-stranded AAV9 expressing the full-length cDNA of IGHMBP2 in a low dose led to a significant level of rescue in treated SMARD1 animals. Consistent with drastically increased survival, weight gain, and strength, the rescued animals demonstrated a significant improvement in muscle, NMJ, motor neurons, and axonal pathology. In addition, increased levels of IGHMBP2 in lumbar motor neurons verified the efficacy of the virus to transduce the target tissues. Our results indicate that AAV9-based gene replacement is a viable strategy for SMARD1, although dosing effects and potential negative impacts of high dose and ICV injection should be thoroughly investigated.


Assuntos
Proteínas de Ligação a DNA/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Atrofia Muscular Espinal/terapia , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Fatores de Transcrição/genética , Animais , Peso Corporal , Dependovirus/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Camundongos , Atrofia Muscular Espinal/genética , Mutação , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Análise de Sobrevida
13.
J Neurosci ; 35(15): 6038-50, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878277

RESUMO

Mechanisms underlying motor neuron degeneration in spinal muscular atrophy (SMA), the leading inherited cause of infant mortality, remain largely unknown. Many studies have established the importance of hyperphosphorylation of the microtubule-associated protein tau in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, tau phosphorylation in SMA pathogenesis has yet to be investigated. Here we show that tau phosphorylation on serine 202 (S202) and threonine 205 (T205) is increased significantly in SMA motor neurons using two SMA mouse models and human SMA patient spinal cord samples. Interestingly, phosphorylated tau does not form aggregates in motor neurons or neuromuscular junctions (NMJs), even at late stages of SMA disease, distinguishing it from other tauopathies. Hyperphosphorylation of tau on S202 and T205 is mediated by cyclin-dependent kinase 5 (Cdk5) in SMA disease condition, because tau phosphorylation at these sites is significantly reduced in Cdk5 knock-out mice; genetic knock-out of Cdk5 activating subunit p35 in an SMA mouse model also leads to reduced tau phosphorylation on S202 and T205 in the SMA;p35(-/-) compound mutant mice. In addition, expression of the phosphorylation-deficient tauS202A,T205A mutant alleviates motor neuron defects in a zebrafish SMA model in vivo and mouse motor neuron degeneration in culture, whereas expression of phosphorylation-mimetic tauS202E,T205E promotes motor neuron defects. More importantly, genetic knock-out of tau in SMA mice rescues synapse stripping on motor neurons, NMJ denervation, and motor neuron degeneration in vivo. Altogether, our findings suggest a novel mechanism for SMA pathogenesis in which hyperphosphorylation of non-aggregating tau by Cdk5 contributes to motor neuron degeneration.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal , Degeneração Neural/etiologia , Medula Espinal/patologia , Proteínas tau/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Imunoprecipitação , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular Espinal/complicações , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Proteínas Nucleares/metabolismo , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Fosforilação , Proteínas Repressoras/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Peixe-Zebra , Proteínas tau/deficiência , Proteínas tau/genética
14.
Hum Mol Genet ; 22(9): 1843-55, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23390132

RESUMO

Spinal Muscular Atrophy (SMA) is due to the loss of the survival motor neuron gene 1 (SMN1), resulting in motor neuron (MN) degeneration, muscle atrophy and loss of motor function. While SMN2 encodes a protein identical to SMN1, a single nucleotide difference in exon 7 causes most of the SMN2-derived transcripts to be alternatively spliced resulting in a truncated and unstable protein (SMNΔ7). SMA patients retain at least one SMN2 copy, making it an important target for therapeutics. Many of the existing SMA models are very severe, with animals typically living less than 2 weeks. Here, we present a novel intermediate mouse model of SMA based upon the human genomic SMN2 gene. Genetically, this model is similar to the well-characterized SMNΔ7 model; however, we have manipulated the SMNΔ7 transgene to encode a modestly more functional protein referred to as SMN read-through (SMN(RT)). By introducing the SMN(RT) transgene onto the background of a severe mouse model of SMA (SMN2(+/+);Smn(-/-)), disease severity was significantly decreased based upon a battery of phenotypic parameters, including MN pathology and a significant extension in survival. Importantly, there is not a full phenotypic correction, allowing for the examination of a broad range of therapeutics, including SMN2-dependent and SMN-independent pathways. This novel animal model serves as an important biological and therapeutic model for less severe forms of SMA and provides an in vivo validation of the SMN(RT) protein.


Assuntos
Modelos Animais de Doenças , Atrofia Muscular Espinal/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Animais , Peso Corporal , Encéfalo/metabolismo , Éxons , Regulação da Expressão Gênica , Humanos , Longevidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atrofia Muscular Espinal/patologia , Fenótipo , Regiões Promotoras Genéticas , RNA/genética , Splicing de RNA , Medula Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética
15.
Hum Mol Genet ; 22(20): 4074-83, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23727836

RESUMO

Spinal muscular atrophy (SMA) is caused by mutations of the survival motor neuron 1 (SMN1) gene, retention of the survival motor neuron 2 (SMN2) gene and insufficient expression of full-length survival motor neuron (SMN) protein. Quinazolines increase SMN2 promoter activity and inhibit the ribonucleic acid scavenger enzyme DcpS. The quinazoline derivative RG3039 has advanced to early phase clinical trials. In preparation for efficacy studies in SMA patients, we investigated the effects of RG3039 in severe SMA mice. Here, we show that RG3039 distributed to central nervous system tissues where it robustly inhibited DcpS enzyme activity, but minimally activated SMN expression or the assembly of small nuclear ribonucleoproteins. Nonetheless, treated SMA mice showed a dose-dependent increase in survival, weight and motor function. This was associated with improved motor neuron somal and neuromuscular junction synaptic innervation and function and increased muscle size. RG3039 also enhanced survival of conditional SMA mice in which SMN had been genetically restored to motor neurons. As this systemically delivered drug may have therapeutic benefits that extend beyond motor neurons, it could act additively with SMN-restoring therapies delivered directly to the central nervous system such as antisense oligonucleotides or gene therapy.


Assuntos
Endorribonucleases/antagonistas & inibidores , Neurônios Motores/efeitos dos fármacos , Atrofia Muscular Espinal/fisiopatologia , Quinazolinas/farmacologia , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/fisiologia , Músculos/efeitos dos fármacos , Músculos/metabolismo , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiologia , Quinazolinas/administração & dosagem , Quinazolinas/farmacocinética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Transmissão Sináptica
16.
Hum Mol Genet ; 21(1): 185-95, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21968514

RESUMO

Spinal muscular atrophy (SMA), a motoneuron disease caused by a deficiency of the survival of motor neuron (SMN) protein, is characterized by motoneuron loss and muscle weakness. It remains unclear whether widespread loss of neuromuscular junctions (NMJs) is involved in SMA pathogenesis. We undertook a systematic examination of NMJ innervation patterns in >20 muscles in the SMNΔ7 SMA mouse model. We found that severe denervation (<50% fully innervated endplates) occurs selectively in many vulnerable axial muscles and several appendicular muscles at the disease end stage. Since these vulnerable muscles were located throughout the body and were comprised of varying muscle fiber types, it is unlikely that muscle location or fiber type determines susceptibility to denervation. Furthermore, we found a similar extent of neurofilament accumulation at NMJs in both vulnerable and resistant muscles before the onset of denervation, suggesting that neurofilament accumulation does not predict subsequent NMJ denervation. Since vulnerable muscles were initially innervated, but later denervated, loss of innervation in SMA may be attributed to defects in synapse maintenance. Finally, we found that denervation was amendable by trichostatin A (TSA) treatment, which increased innervation in clinically relevant muscles in TSA-treated SMNΔ7 mice. Our findings suggest that neuromuscular denervation in vulnerable muscles is a widespread pathology in SMA, and can serve as a preparation for elucidating the biological basis of synapse loss, and for evaluating therapeutic efficacy.


Assuntos
Modelos Animais de Doenças , Camundongos , Músculo Esquelético/inervação , Atrofia Muscular Espinal/patologia , Junção Neuromuscular/cirurgia , Animais , Masculino , Camundongos Knockout , Camundongos Transgênicos , Denervação Muscular , Músculo Esquelético/patologia , Músculo Esquelético/cirurgia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/cirurgia , Degeneração Neural , Junção Neuromuscular/metabolismo , Sinapses/metabolismo , Sinapses/patologia
17.
Hum Mol Genet ; 21(20): 4431-47, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22802075

RESUMO

A number of mouse models for spinal muscular atrophy (SMA) have been genetically engineered to recapitulate the severity of human SMA by using a targeted null mutation at the mouse Smn1 locus coupled with the transgenic addition of varying copy numbers of human SMN2 genes. Although this approach has been useful in modeling severe SMA and very mild SMA, a mouse model of the intermediate form of the disease would provide an additional research tool amenable for drug discovery. In addition, many of the previously engineered SMA strains are multi-allelic by design, containing a combination of transgenes and targeted mutations in the homozygous state, making further genetic manipulation difficult. A new genetic engineering approach was developed whereby variable numbers of SMN2 sequences were incorporated directly into the murine Smn1 locus. Using combinations of these alleles, we generated an allelic series of SMA mouse strains harboring no, one, two, three, four, five, six or eight copies of SMN2. We report here the characterization of SMA mutants in this series that displayed a range in disease severity from embryonic lethal to viable with mild neuromuscular deficits.


Assuntos
Atrofia Muscular Espinal/genética , Junção Neuromuscular/genética , Alelos , Animais , Comportamento Animal , Modelos Animais de Doenças , Genótipo , Humanos , Camundongos , Camundongos Endogâmicos , Junção Neuromuscular/metabolismo , Fenótipo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-38858074

RESUMO

The neuromuscular junction (NMJ) is a highly reliable synapse to carry the control of the motor commands of the nervous system over the muscles. Its development, organization, and synaptic properties are highly structured and regulated to support such reliability and efficacy. Yet, the NMJ is also highly plastic, able to react to injury, and able to adapt to changes. This balance between structural stability and synaptic efficacy on one hand and structural plasticity and repair on another hand is made possible by perisynaptic Schwann cells (PSCs), glial cells at this synapse. They regulate synaptic efficacy and structural plasticity of the NMJ in a dynamic, bidirectional manner owing to their ability to decode synaptic transmission and by their interactions with trophic-related factors. Alteration of these fundamental roles of PSCs is also important in the maladapted response of NMJs in various diseases and in aging.

19.
J Physiol ; 591(10): 2463-73, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23401610

RESUMO

Complexins (Cplxs) are small, SNARE-associated proteins believed to regulate fast, calcium-triggered exocytosis. However, studies have pointed to either an inhibitory and/or facilitatory role in exocytosis, and the role of Cplxs in synchronizing exocytosis is relatively unexplored. Here, we compare the function of two types of complexin, Cplx 1 and 2, in two model systems of calcium-dependent exocytosis. In mouse neuromuscular junctions (NMJs), we find that lack of Cplx 1 significantly reduces and desynchronizes calcium-triggered synaptic transmission; furthermore, high-frequency stimulation elicits synaptic facilitation, instead of normal synaptic depression, and the degree of facilitation is highly sensitive to the amount of cytoplasmic calcium buffering. In Cplx 2-null adrenal chromaffin cells, we also find decreased and desynchronized evoked release, and identify a significant reduction in the vesicle pool close to the calcium channels (immediately releasable pool, IRP). Viral transduction with either Cplx 1 or 2 rescues both the size of the evoked response and the synchronicity of release, and it restores the IRP size. Our findings in two model systems are mutually compatible and indicate a role of Cplx 1 and 2 in facilitating vesicle priming, and also lead to the new hypothesis that Cplxs may synchronize vesicle release by promoting coupling between secretory vesicles and calcium channels.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Canais de Cálcio/fisiologia , Células Cromafins/fisiologia , Exocitose/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Vesículas Secretórias/fisiologia , Animais , Células HEK293 , Humanos , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Músculo Esquelético/fisiologia , Junção Neuromuscular/fisiologia , Sinapses/fisiologia
20.
Proc Natl Acad Sci U S A ; 107(23): 10702-7, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20498043

RESUMO

Emerging evidence suggests that the neurotransmitter acetylcholine (ACh) negatively regulates the development of the neuromuscular junction, but it is not clear if ACh exerts its effects exclusively through muscle ACh receptors (AChRs). Here, we used genetic methods to remove AChRs selectively from muscle. Similar to the effects of blocking ACh biosynthesis, eliminating postsynaptic AChRs increased motor axon branching and expanded innervation territory, suggesting that ACh negatively regulates synaptic growth through postsynaptic AChRs. However, in contrast to the effects of blocking ACh biosynthesis, eliminating postsynaptic AChRs in agrin-deficient mice failed to restore deficits in pre- and postsynaptic differentiation, suggesting that ACh negatively regulates synaptic differentiation through nonpostsynaptic receptors. Consistent with this idea, the ACh agonist carbachol inhibited presynaptic specialization of motorneurons in vitro. Together, these data suggest that ACh negatively regulates axon growth and presynaptic specialization at the neuromuscular junction through distinct cellular mechanisms.


Assuntos
Acetilcolina/metabolismo , Junção Neuromuscular/metabolismo , Acetilação , Acetilcolina/agonistas , Animais , Carbacol/farmacologia , Diferenciação Celular , Agonistas Colinérgicos/farmacologia , Camundongos , Junção Neuromuscular/citologia , Junção Neuromuscular/efeitos dos fármacos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA