Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mutagenesis ; 34(1): 3-16, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30357358

RESUMO

The International Conference on Harmonization (ICH) M7 guideline allows the use of in silico approaches for predicting Ames mutagenicity for the initial assessment of impurities in pharmaceuticals. This is the first international guideline that addresses the use of quantitative structure-activity relationship (QSAR) models in lieu of actual toxicological studies for human health assessment. Therefore, QSAR models for Ames mutagenicity now require higher predictive power for identifying mutagenic chemicals. To increase the predictive power of QSAR models, larger experimental datasets from reliable sources are required. The Division of Genetics and Mutagenesis, National Institute of Health Sciences (DGM/NIHS) of Japan recently established a unique proprietary Ames mutagenicity database containing 12140 new chemicals that have not been previously used for developing QSAR models. The DGM/NIHS provided this Ames database to QSAR vendors to validate and improve their QSAR tools. The Ames/QSAR International Challenge Project was initiated in 2014 with 12 QSAR vendors testing 17 QSAR tools against these compounds in three phases. We now present the final results. All tools were considerably improved by participation in this project. Most tools achieved >50% sensitivity (positive prediction among all Ames positives) and predictive power (accuracy) was as high as 80%, almost equivalent to the inter-laboratory reproducibility of Ames tests. To further increase the predictive power of QSAR tools, accumulation of additional Ames test data is required as well as re-evaluation of some previous Ames test results. Indeed, some Ames-positive or Ames-negative chemicals may have previously been incorrectly classified because of methodological weakness, resulting in false-positive or false-negative predictions by QSAR tools. These incorrect data hamper prediction and are a source of noise in the development of QSAR models. It is thus essential to establish a large benchmark database consisting only of well-validated Ames test results to build more accurate QSAR models.


Assuntos
Mutagênese/efeitos dos fármacos , Mutagênicos/toxicidade , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Bases de Dados Factuais , Humanos , Japão , Testes de Mutagenicidade
2.
Nat Protoc ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755447

RESUMO

Making research data findable, accessible, interoperable and reusable (FAIR) is typically hampered by a lack of skills in technical aspects of data management by data generators and a lack of resources. We developed a Template Wizard for researchers to easily create templates suitable for consistently capturing data and metadata from their experiments. The templates are easy to use and enable the compilation of machine-readable metadata to accompany data generation and align them to existing community standards and databases, such as eNanoMapper, streamlining the adoption of the FAIR principles. These templates are citable objects and are available as online tools. The Template Wizard is designed to be user friendly and facilitates using and reusing existing templates for new projects or project extensions. The wizard is accompanied by an online template validator, which allows self-evaluation of the template (to ensure mapping to the data schema and machine readability of the captured data) and transformation by an open-source parser into machine-readable formats, compliant with the FAIR principles. The templates are based on extensive collective experience in nanosafety data collection and include over 60 harmonized data entry templates for physicochemical characterization and hazard assessment (cell viability, genotoxicity, environmental organism dose-response tests, omics), as well as exposure and release studies. The templates are generalizable across fields and have already been extended and adapted for microplastics and advanced materials research. The harmonized templates improve the reliability of interlaboratory comparisons, data reuse and meta-analyses and can facilitate the safety evaluation and regulation process for (nano) materials.

3.
Altern Lab Anim ; 41(1): 49-64, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23614544

RESUMO

QSAR regression models of the toxicity of triazoles and benzotriazoles ([B]TAZs) to an alga (Pseudokirchneriella subcapitata), Daphnia magna and a fish (Onchorhynchus mykiss), were developed by five partners in the FP7-EU Project, CADASTER. The models were developed by different methods - Ordinary Least Squares (OLS), Partial Least Squares (PLS), Bayesian regularised regression and Associative Neural Network (ASNN) - by using various molecular descriptors (DRAGON, PaDEL-Descriptor and QSPR-THESAURUS web). In addition, different procedures were used for variable selection, validation and applicability domain inspection. The predictions of the models developed, as well as those obtained in a consensus approach by averaging the data predicted from each model, were compared with the results of experimental tests that were performed by two CADASTER partners. The individual and consensus models were able to correctly predict the toxicity classes of the chemicals tested in the CADASTER project, confirming the utility of the QSAR approach. The models were also used for the prediction of aquatic toxicity of over 300 (B)TAZs, many of which are included in the REACH pre-registration list, and were without experimental data. This highlights the importance of QSAR models for the screening and prioritisation of untested chemicals, in order to reduce and focus experimental testing.


Assuntos
Modelos Biológicos , Oncorhynchus mykiss , Relação Quantitativa Estrutura-Atividade , Triazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Daphnia , Microalgas , Testes de Toxicidade
4.
Nat Nanotechnol ; 17(9): 924-932, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35982314

RESUMO

Engineered nanomaterials (ENMs) enable new and enhanced products and devices in which matter can be controlled at a near-atomic scale (in the range of 1 to 100 nm). However, the unique nanoscale properties that make ENMs attractive may result in as yet poorly known risks to human health and the environment. Thus, new ENMs should be designed in line with the idea of safe-and-sustainable-by-design (SSbD). The biological activity of ENMs is closely related to their physicochemical characteristics, changes in these characteristics may therefore cause changes in the ENMs activity. In this sense, a set of physicochemical characteristics (for example, chemical composition, crystal structure, size, shape, surface structure) creates a unique 'representation' of a given ENM. The usability of these characteristics or nanomaterial descriptors (nanodescriptors) in nanoinformatics methods such as quantitative structure-activity/property relationship (QSAR/QSPR) models, provides exciting opportunities to optimize ENMs at the design stage by improving their functionality and minimizing unforeseen health/environmental hazards. A computational screening of possible versions of novel ENMs would return optimal nanostructures and manage ('design out') hazardous features at the earliest possible manufacturing step. Safe adoption of ENMs on a vast scale will depend on the successful integration of the entire bulk of nanodescriptors extracted experimentally with data from theoretical and computational models. This Review discusses directions for developing appropriate nanomaterial representations and related nanodescriptors to enhance the reliability of computational modelling utilized in designing safer and more sustainable ENMs.


Assuntos
Nanoestruturas , Simulação por Computador , Humanos , Nanoestruturas/química , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes
5.
Mol Inform ; 40(11): e2100027, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34342942

RESUMO

SLN (SYBYL Line Notation) is the most comprehensive and rich linear notation for representation of chemical objects of various kinds facilitating a wide range of cheminformatics algorithms. Though, it is not the most popular linear notation nowadays, SLN has capabilities for supporting the most challenging tasks of the present day cheminformatics research. We present Ambit-SLN, a new software library for cheminformatics processing of chemical objects via linear notation SLN. Ambit-SLN is developed as a part of the cheminformatics platform AMBIT. It is an open-source tool, distributed under LGPL license, written in Java and based on the Chemistry Development Kit. Ambit-SLN includes a parser for the full SLN syntax of chemical structures and substructure search queries including support for macro and Markush atoms, global and local dictionaries and user defined properties which can be stored and used by the Ambit data model. The Ambit-SLN library includes functionalities for substructure matching based on SLN query strings and utilities for conversion of SLN objects to other chemical formats such as SMILES and SMARTS. The functionality for Markush atom expansion can be used for generation of combinatorial structure sets.


Assuntos
Quimioinformática , Software , Algoritmos
6.
Nat Nanotechnol ; 16(6): 644-654, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34017099

RESUMO

Nanotechnology is a key enabling technology with billions of euros in global investment from public funding, which include large collaborative projects that have investigated environmental and health safety aspects of nanomaterials, but the reuse of accumulated data is clearly lagging behind. Here we summarize challenges and provide recommendations for the efficient reuse of nanosafety data, in line with the recently established FAIR (findable, accessible, interoperable and reusable) guiding principles. We describe the FAIR-aligned Nanosafety Data Interface, with an aggregated findability, accessibility and interoperability across physicochemical, bio-nano interaction, human toxicity, omics, ecotoxicological and exposure data. Overall, we illustrate a much-needed path towards standards for the optimized use of existing data, which avoids duplication of efforts, and provides a multitude of options to promote safe and sustainable nanotechnology.

7.
Nanomaterials (Basel) ; 10(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987901

RESUMO

The field of nanoinformatics is rapidly developing and provides data driven solutions in the area of nanomaterials (NM) safety. Safe by Design approaches are encouraged and promoted through regulatory initiatives and multiple scientific projects. Experimental data is at the core of nanoinformatics processing workflows for risk assessment. The nanosafety data is predominantly recorded in Excel spreadsheet files. Although the spreadsheets are quite convenient for the experimentalists, they also pose great challenges for the consequent processing into databases due to variability of the templates used, specific details provided by each laboratory and the need for proper metadata documentation and formatting. In this paper, we present a workflow to facilitate the conversion of spreadsheets into a FAIR (Findable, Accessible, Interoperable, and Reusable) database, with the pivotal aid of the NMDataParser tool, developed to streamline the mapping of the original file layout into the eNanoMapper semantic data model. The NMDataParser is an open source Java library and application, making use of a JSON configuration to define the mapping. We describe the JSON configuration syntax and the approaches applied for parsing different spreadsheet layouts used by the nanosafety community. Examples of using the NMDataParser tool in nanoinformatics workflows are given. Challenging cases are discussed and appropriate solutions are proposed.

8.
Mol Inform ; 38(8-9): e1800138, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30654426

RESUMO

Ambit-GCM is a new software tool for group contribution modelling (GCM), developed as a part of the chemoinformatics platform AMBIT. It is an open-source tool distributed under LGPL license, written in Java and based on the Chemistry Development Kit. Ambit-GCM provides an environment for creating models of molecular properties using additive schemes of zero, first or second orders. Ambit-GCM supports a set of local atomic attributes used for dynamic configuration of desired atom descriptions, which are applied to define fragments of different sizes. All defined groups are exhaustively generated for each molecule from a training set of compounds and combined to form the basic set of GCM fragments. Additionally, Ambit-GCM users can define correction factors via custom SMARTS notations or add externally calculated molecular descriptors. A molecular property model is obtained as a sum over all found groups by multiplying each group or correction factor frequency to its corresponding contribution. Multiple linear regression analysis (MLRA) is used for group contributions calculation. Ambit-GCM performs full statistical characterization of the obtained MLRA models via various validation techniques: external tests validation, cross validation, y-scrambling, etc. The software can be optionally used only for molecule fragmentation combined with an external statistical modelling package for further processing. Ambit-GCM example usage and test cases are given.


Assuntos
Software , Algoritmos , Modelos Moleculares , Modelos Estatísticos , Análise de Regressão , Reprodutibilidade dos Testes
9.
Front Chem ; 7: 402, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249827

RESUMO

Computational prediction of xenobiotic metabolism can provide valuable information to guide the development of drugs, cosmetics, agrochemicals, and other chemical entities. We have previously developed FAME 2, an effective tool for predicting sites of metabolism (SoMs). In this work, we focus on the prediction of the chemical structures of metabolites, in particular metabolites of xenobiotics. To this end, we have developed a new tool, GLORY, which combines SoM prediction with FAME 2 and a new collection of rules for metabolic reactions mediated by the cytochrome P450 enzyme family. GLORY has two modes: MaxEfficiency and MaxCoverage. For MaxEfficiency mode, the use of predicted SoMs to restrict the locations in the molecule at which the reaction rules could be applied was explored. For MaxCoverage mode, the predicted SoM probabilities were instead used to develop a new scoring approach for the predicted metabolites. With this scoring approach, GLORY achieves a recall of 0.83 and can predict at least one known metabolite within the top three ranked positions for 76% of the molecules of a new, manually curated test set. GLORY is freely available as a web server at https://acm.zbh.uni-hamburg.de/glory/, and the datasets and reaction rules are provided in the Supplementary Material.

10.
J Cheminform ; 10(1): 42, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30128804

RESUMO

Ambit-SMIRKS is an open source software, enabling structure transformation via the SMIRKS language and implemented as an extension of Ambit-SMARTS. As part of the Ambit project it builds on top of The Chemistry Development Kit (The CDK). Ambit-SMIRKS provides the following functionalities: parsing of SMIRKS linear notations into internal reaction (transformation) representations based on The CDK objects, application of the stored reactions against target (reactant) molecules for actual transformation of the target chemical objects, reaction searching, stereo information handling, product post-processing, etc. The transformations can be applied on various sites of the reactant molecule in several modes: single, non-overlapping, non-identical, non-homomorphic or externally specified list of sites utilizing efficient substructure searching algorithm. Ambit-SMIRKS handles the molecules stereo information and supports basic chemical stereo elements implemented in The CDK library. The full SMARTS logical expressions syntax for reactions specification is supported, including recursive SMARTS expressions as well as additional syntax extensions. Since its initial development for the purpose of metabolite generation within Toxtree, the Ambit-SMIRKS module was used in various chemoinformatics projects, both developed by the authors of the package and by external teams. We show several use cases of the Ambit-SMIRKS software including standardization of large chemical databases and pathway transformation database and prediction. Ambit-SMIRKS is distributed as a Java library under LGPL license. More information on use cases and applications, including download links is available at http://ambit.sourceforge.net/smirks .

11.
J Cheminform ; 9: 17, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28316655

RESUMO

Chemogenomics data generally refers to the activity data of chemical compounds on an array of protein targets and represents an important source of information for building in silico target prediction models. The increasing volume of chemogenomics data offers exciting opportunities to build models based on Big Data. Preparing a high quality data set is a vital step in realizing this goal and this work aims to compile such a comprehensive chemogenomics dataset. This dataset comprises over 70 million SAR data points from publicly available databases (PubChem and ChEMBL) including structure, target information and activity annotations. Our aspiration is to create a useful chemogenomics resource reflecting industry-scale data not only for building predictive models of in silico polypharmacology and off-target effects but also for the validation of cheminformatics approaches in general.

12.
Beilstein J Nanotechnol ; 6: 1609-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26425413

RESUMO

BACKGROUND: The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs. RESULTS: The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API), and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms. CONCLUSION: We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the "representational state transfer" (REST) API enables building user friendly interfaces and graphical summaries of the data, and how these resources facilitate the modelling of reproducible quantitative structure-activity relationships for nanomaterials (NanoQSAR).

13.
Mol Inform ; 32(5-6): 481-504, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27481667

RESUMO

We present a new open source tool for automatic generation of all tautomeric forms of a given organic compound. Ambit-Tautomer is a part of the open source software package Ambit2. It implements three tautomer generation algorithms: combinatorial method, improved combinatorial method and incremental depth-first search algorithm. All algorithms utilize a set of fully customizable rules for tautomeric transformations. The predefined knowledge base covers 1-3, 1-5 and 1-7 proton tautomeric shifts. Some typical supported tautomerism rules are keto-enol, imin-amin, nitroso-oxime, azo-hydrazone, thioketo-thioenol, thionitroso-thiooxime, amidine-imidine, diazoamino-diazoamino, thioamide-iminothiol and nitrosamine-diazohydroxide. Ambit-Tautomer uses a simple energy based system for tautomer ranking implemented by a set of empirically derived rules. A fine-grained output control is achieved by a set of post-generation filters. We performed an exhaustive comparison of the Ambit-Tautomer Incremental algorithm against several other software packages which offer tautomer generation: ChemAxon Marvin, Molecular Networks MN.TAUTOMER, ACDLabs, CACTVS and the CDK implementation of the algorithm, based on the mobile H atoms listed in the InChI. According to the presented test results, Ambit-Tautomer's performance is either comparable to or better than the competing algorithms. Ambit-Tautomer module is available for download as a Java library, a command line application, a demo web page or OpenTox API compatible Web service.

15.
Mol Inform ; 30(8): 707-20, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27467262

RESUMO

We present new developments in the AMBIT open source software package for efficient searching of chemical structures and structural fragments. AMBIT-SMARTS is a Java based software built on top of The Chemistry Development Kit. The AMBIT-SMARTS parser implements the entire SMARTS language specification with several syntax extensions that enable support for custom modifications introduced by third party software packages such as OpenEye, MOE and OpenBabel. The goal of yet another open-source SMARTS parser implementation is to achieve better performance and compatibility with multiple existing flavours of the SMARTS language, as well as to provide utilities for running efficient SMARTS queries in large structural databases. We describe a combination of approaches towards lowering the computational cost and improving the response time of substructure queries. An exhaustive comparison of the AMBIT algorithm with several subgraph isomorphism implementations is performed. To demonstrate the performance of the entire system from an end-user point of view, response time statistics for Web service substructure search queries against a database of 4.5 M structures are also reported. The package has wide applicability in the implementation of various chemoinformatics tasks. It has already been used in several projects dealing with descriptor calculation and predictive algorithms, database queries, web applications and web services.

16.
Mol Inform ; 30(2-3): 189-204, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-27466773

RESUMO

Quantitative structure property relationship (QSPR) studies on per- and polyfluorinated chemicals (PFCs) on melting point (MP) and boiling point (BP) are presented. The training and prediction chemicals used for developing and validating the models were selected from Syracuse PhysProp database and literatures. The available experimental data sets were split in two different ways: a) random selection on response value, and b) structural similarity verified by self-organizing-map (SOM), in order to propose reliable predictive models, developed only on the training sets and externally verified on the prediction sets. Individual linear and non-linear approaches based models developed by different CADASTER partners on 0D-2D Dragon descriptors, E-state descriptors and fragment based descriptors as well as consensus model and their predictions are presented. In addition, the predictive performance of the developed models was verified on a blind external validation set (EV-set) prepared using PERFORCE database on 15 MP and 25 BP data respectively. This database contains only long chain perfluoro-alkylated chemicals, particularly monitored by regulatory agencies like US-EPA and EU-REACH. QSPR models with internal and external validation on two different external prediction/validation sets and study of applicability-domain highlighting the robustness and high accuracy of the models are discussed. Finally, MPs for additional 303 PFCs and BPs for 271 PFCs were predicted for which experimental measurements are unknown.

17.
J Mol Model ; 13(9): 1001-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17629753

RESUMO

Twelve H-bonded supersystems constructed between the adenine tautomers and methanol, ethanol, and i-propanol were studied at the B3LYP and MP2 levels of theory using 6-311G(d,p) and 6-311++G(d,p) basis functions. The thermodynamic parameters of the complex formations were calculated in order to estimate the exact stability of the supersystems. It was proven that the calculated energy barriers of the alcohol-assisted proton transfers are about 60% lower than those of the intramolecular proton transfers in adenine found earlier (Gu and Leszczynski in J Phys Chem A 103:2744-2750, 1999).


Assuntos
2-Propanol/química , Adenina/química , Etanol/química , Metanol/química , Prótons , Simulação por Computador , Ligação de Hidrogênio , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA