Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Ecol ; 33(6): e17292, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38339833

RESUMO

Malaria cases are frequently recorded in the Ethiopian highlands even at altitudes above 2000 m. The epidemiology of malaria in the Ethiopian highlands, and, in particular, the role of importation by human migration from the highly endemic lowlands is not well understood. We sequenced 187 Plasmodium falciparum samples from two sites in the Ethiopian highlands, Gondar (n = 159) and Ziway (n = 28), using a multiplexed droplet digital PCR (ddPCR)-based amplicon sequencing method targeting 35 microhaplotypes and drug resistance loci. Here, we characterize the parasite population structure and genetic relatedness. We identify moderate parasite diversity (mean HE : 0.54) and low infection complexity (74.9% monoclonal). A significant percentage of infections share microhaplotypes, even across transmission seasons and sites, indicating persistent local transmission. We identify multiple clusters of clonal or near-clonal infections, highlighting high genetic relatedness. Only 6.3% of individuals diagnosed with P. falciparum reported recent travel. Yet, in clonal or near-clonal clusters, infections of travellers were frequently observed first in time, suggesting that parasites may have been imported and then transmitted locally. 31.1% of infections are pfhrp2-deleted and 84.4% pfhrp3-deleted, and 28.7% have pfhrp2/3 double deletions. Parasites with pfhrp2/3 deletions and wild-type parasites are genetically distinct. Mutations associated with resistance to sulphadoxine-pyrimethamine or suggested to reduce sensitivity to lumefantrine are observed at near-fixation. In conclusion, genomic data corroborate local transmission and the importance of intensified control in the Ethiopian highlands.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Antígenos de Protozoários/genética , Etiópia/epidemiologia , Deleção de Genes , Malária Falciparum/genética , Malária/genética
2.
Malar J ; 22(1): 380, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102649

RESUMO

In many studies to evaluate the quality of malaria diagnosis, microscopy or rapid diagnostic tests (RDT) are compared to PCR. Depending on the method for sample collection and storage (whole blood or dried blood spot), volume of blood used for extraction, volume of DNA used as PCR template, and choice of PCR target (single vs. multi-copy gene), the limit of detection (LOD) of PCR might not exceed the LOD of expert microscopy or RDT. One should not assume that PCR always detects the highest number of infections.


Assuntos
Malária Falciparum , Malária , Humanos , Malária/diagnóstico , Reação em Cadeia da Polimerase/métodos , Limite de Detecção , Manejo de Espécimes , Microscopia/métodos , Testes Diagnósticos de Rotina/métodos , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Sensibilidade e Especificidade
3.
Malar J ; 22(1): 376, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087335

RESUMO

BACKGROUND: Plasmodium falciparum genetic diversity can add information on transmission intensity and can be used to track control and elimination interventions. METHODS: Dried blood spots (DBS) were collected from patients who were recruited for a P. falciparum malaria therapeutic efficacy trial in three malaria endemic sites in Ethiopia from October to December 2015, and November to December 2019. qPCR-confirmed infections were subject to amplicon sequencing of polymorphic markers ama1-D3, csp, cpp, cpmp, msp7. Genetic diversity, the proportion of multiclonal infections, multiplicity of infection, and population structure were analysed. RESULTS: Among 198 samples selected for sequencing, data was obtained for 181 samples. Mean MOI was 1.38 (95% CI 1.24-1.53) and 17% (31/181) of infections were polyclonal. Mean He across all markers was 0.730. Population structure was moderate; populations from Metema and Metehara 2015 were very similar to each other, but distinct from Wondogent 2015 and Metehara 2019. CONCLUSION: The high level of parasite genetic diversity and moderate population structure in this study suggests frequent gene flow of parasites among sites. The results obtained can be used as a baseline for additional parasite genetic diversity and structure studies, aiding in the formulation of appropriate control strategies in Ethiopia.


Assuntos
Malária Falciparum , Parasitos , Humanos , Animais , Plasmodium falciparum/genética , Etiópia/epidemiologia , Variação Genética , Malária Falciparum/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala
4.
Malar J ; 22(1): 76, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870966

RESUMO

BACKGROUND: The World Health Organization recommends parasitological confirmation of all suspected malaria cases by microscopy or rapid diagnostic tests (RDTs) before treatment. These conventional tools are widely used for point-of-care diagnosis in spite of their poor sensitivity at low parasite density. Previous studies in Ghana have compared microscopy and RDT using standard 18S rRNA PCR as reference with varying outcomes. However, how these conventional tools compare with ultrasensitive varATS qPCR has not been studied. This study, therefore, sought to investigate the clinical performance of microscopy and RDT assuming highly sensitive varATS qPCR as gold standard. METHODS: 1040 suspected malaria patients were recruited from two primary health care centers in the Ashanti Region of Ghana and tested for malaria by microscopy, RDT, and varATS qPCR. The sensitivity, specificity, and predictive values were assessed using varATS qPCR as gold standard. RESULTS: Parasite prevalence was 17.5%, 24.5%, and 42.1% by microscopy, RDT, and varATS qPCR respectively. Using varATS qPCR as the standard, RDT was more sensitive (55.7% vs 39.3%), equally specific (98.2% vs 98.3%), and reported higher positive (95.7% vs 94.5%) and negative predictive values (75.3% vs 69.0%) than microscopy. Consequently, RDT recorded better diagnostic agreement (kappa = 0.571) with varATS qPCR than microscopy (kappa = 0.409) for clinical detection of malaria. CONCLUSIONS: RDT outperformed microscopy for the diagnosis of Plasmodium falciparum malaria in the study. However, both tests missed over 40% of infections that were detected by varATS qPCR. Novel tools are needed to ensure prompt diagnosis of all clinical malaria cases.


Assuntos
Malária Falciparum , Malária , Humanos , Microscopia , Reação em Cadeia da Polimerase , Gana
5.
Malar J ; 22(1): 341, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940948

RESUMO

BACKGROUND: Water resource development projects, such as dams and irrigation schemes, have a positive impact on food security and poverty reduction. However, such projects could increase prevalence of vector borne disease, such as malaria. This study investigate the impact of different agroecosystems and prevalence of malaria infection in Southwest Ethiopia. METHODS: Two cross-sectional surveys were conducted in the dry and wet seasons in irrigated and non-irrigated clusters of Arjo sugarcane and Gambella rice development areas of Ethiopia in 2019. A total of 4464 and 2176 study participants from 1449 households in Arjo and 546 households in Gambella enrolled in the study and blood samples were collected, respectively. All blood samples were microscopically examined and a subset of microscopy negative blood samples (n = 2244) were analysed by qPCR. Mixed effect logistic regression and generalized estimating equation were used to determine microscopic and submicroscopic malaria infection and the associated risk factors, respectively. RESULTS: Prevalence by microscopy was 2.0% (88/4464) in Arjo and 6.1% (133/2176) in Gambella. In Gambella, prevalence was significantly higher in irrigated clusters (10.4% vs 3.6%) than in non-irrigated clusters (p < 0.001), but no difference was found in Arjo (2.0% vs 2.0%; p = 0.993). On the other hand, of the 1713 and 531 samples analysed by qPCR from Arjo and Gambella the presence of submicroscopic infection was 1.2% and 12.8%, respectively. Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale were identified by qPCR in both sites. Irrigation was a risk factor for submicroscopic infection in both Arjo and Gambella. Irrigation, being a migrant worker, outdoor job, < 6 months length of stay in the area were risk factors for microscopic infection in Gambella. Moreover, school-age children and length of stay in the area for 1-3 years were significant predictors for submicroscopic malaria in Gambella. However, no ITN utilization was a predictor for both submicroscopic and microscopic infection in Arjo. Season was also a risk factor for microscopic infection in Arjo. CONCLUSION: The study highlighted the potential importance of different irrigation practices impacting on submicroscopic malaria transmission. Moreover, microscopic and submicroscopic infections coupled with population movement may contribute to residual malaria transmission and could hinder malaria control and elimination programmes in the country. Therefore, strengthening malaria surveillance and control by using highly sensitive diagnostic tools to detect low-density parasites, screening migrant workers upon arrival and departure, ensuring adequate coverage and proper utilization of vector control tools, and health education for at-risk groups residing or working in such development corridors is needed.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Oryza , Saccharum , Humanos , Infecções Assintomáticas/epidemiologia , Estudos Transversais , Etiópia/epidemiologia , Características da Família , Malária/epidemiologia , Malária/parasitologia , Malária Falciparum/parasitologia , Malária Vivax/epidemiologia , Plasmodium falciparum , Prevalência , Criança
6.
Malar J ; 21(1): 88, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292038

RESUMO

BACKGROUND: Molecular and genomic surveillance is becoming increasingly used to track malaria control and elimination efforts. Blood samples can be collected as whole blood and stored at - 20 °C until DNA extraction, or as dried blood spots (DBS), circumventing the need for a cold chain. Despite the wide use of either method, systematic comparisons of how the method of blood sample preservation affects the limit of detection (LOD) of molecular diagnosis and the proportion of DNA recovered for downstream applications are lacking. METHODS: Extractions based on spin columns, magnetic beads, Tween-Chelex, and direct PCR without prior extraction were compared for whole blood and dried blood spots (DBS) using dilution series of Plasmodium falciparum culture samples. Extracted DNA was quantified by qPCR and droplet digital PCR (ddPCR). RESULTS: DNA recovery was 5- to 10-fold higher for whole blood compared to DBS, resulting in a 2- to 3-fold lower LOD for both extraction methods compared to DBS. For whole blood, a magnetic bead-based method resulted in a DNA recovery rate of 88-98% when extracting from whole blood compared to 17-33% for a spin-column based method. For extractions from DBS, the magnetic bead-based method resulted in 8-20% DNA recovery, while the spin-column based method resulted in only 2% DNA recovery. The Tween-Chelex method was superior to other methods with 15-21% DNA recovery, and even more sensitive than extractions from whole blood samples. The direct PCR method was found to have the lowest LOD overall for both, whole blood and DBS. CONCLUSIONS: Pronounced differences in LOD and DNA yield need to be considered when comparing prevalence estimates based on molecular methods and when selecting sampling protocols for other molecular surveillance applications.


Assuntos
Malária Falciparum , Malária , DNA , Humanos , Malária Falciparum/diagnóstico , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase em Tempo Real
7.
Malar J ; 21(1): 218, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836171

RESUMO

BACKGROUND: Malaria remains endemic in Bangladesh, with the majority of cases occurring in forested, mountainous region in the Chittagong Hill Tracts (CHT). This area is home to Bengali and diverse groups of indigenous people (Pahari) residing largely in mono-ethnic villages. METHODS: 1002 individuals of the 9 most prominent Pahari and the Bengali population were randomly selected and screened by RDT and qPCR. Parasites were genotyped by msp2 and deep sequencing of 5 amplicons (ama1-D3, cpmp, cpp, csp, and msp7) for Plasmodium falciparum (n = 20), and by microsatellite (MS) typing of ten loci and amplicon sequencing of msp1 for Plasmodium vivax (n = 21). Population structure was analysed using STRUCTURE software. Identity-by-state (IBS) was calculated as a measure of parasite relatedness and used to generate relatedness networks. RESULTS: The prevalence of P. falciparum and P. vivax infection was 0.7% by RDT (P. falciparum 6/1002; P. vivax 0/1002, mixed: 1/1002) and 4% by qPCR (P. falciparum 21/1002; P. vivax 16/1002, mixed: 5/1002). Infections were highly clustered, with 64% (27/42) of infections occurring in only two Pahari groups, the Khumi and Mro. Diversity was high; expected heterozygosity was 0.93 for P. falciparum and 0.81 for P. vivax. 85.7% (18/21) of P. vivax and 25% (5/20) of P. falciparum infections were polyclonal. No population structure was evident for either species, suggesting high transmission and gene flow among Pahari groups. CONCLUSIONS: High subclinical infection prevalence and genetic diversity mirror ongoing transmission. Control activities should be specifically directed to Pahari groups at greatest risk.


Assuntos
Malária Falciparum , Malária Vivax , Parasitos , Animais , Bangladesh/epidemiologia , Análise por Conglomerados , Genômica , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Plasmodium falciparum/genética , Plasmodium vivax/genética , Prevalência
8.
BMC Public Health ; 22(1): 196, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093055

RESUMO

BACKGROUND: Land use change has increasingly been expanding throughout the world in the past decades. It can have profound effects on the spatial and temporal distribution of vector borne diseases like malaria through ecological and habitat change. Understanding malaria disease occurrence and the impact of prevention interventions under this intense environmental modification is important for effective and efficient malaria control strategy. METHODS: A descriptive ecological study was conducted by reviewing health service records at Abobo district health office. The records were reviewed to extract data on malaria morbidity, mortality, and prevention and control methods. Moreover, Meteorological data were obtained from Gambella region Meteorology Service Center and National Meteorology Authority head office. Univariate, bivariate and multivariate analysis techniques were used to analyze the data. RESULTS: For the twelve-year time period, the mean annual total malaria case count in the district was 7369.58. The peak monthly malaria incidence was about 57 cases per 1000 people. Only in 2009 and 2015 that zero death due to malaria was recorded over the past 12 years. Fluctuating pattern of impatient malaria cases occurrence was seen over the past twelve years with an average number of 225.5 inpatient cases. The data showed that there is a high burden of malaria in the district. Plasmodium falciparum (Pf) was a predominant parasite species in the district with the maximum percentage of about 90. There was no statistically significant association between season and total malaria case number (F3,8: 1.982, P:0.195). However, the inter-annual total case count difference was statistically significant (F11,132: 36.305, p < 0001). Total malaria case count had shown two months lagged carry on effect. Moreover, 3 months lagged humidity had significant positive effect on total malaria cases. Malaria prevention interventions and meteorological factors showed statistically significant association with total malaria cases. CONCLUSION: Malaria was and will remain to be a major public health problem in the area. The social and economic impact of the disease on the local community is clearly pronounced as it is the leading cause of health facility visit and admission including the mortality associated with it. Scale up of effective interventions is quite important. Continuous monitoring of the performance of the vector control tools needs to be done.


Assuntos
Malária Falciparum , Malária , Agricultura , Clima , Etiópia/epidemiologia , Humanos , Malária/epidemiologia , Malária/parasitologia , Malária/prevenção & controle , Malária Falciparum/epidemiologia , Plasmodium falciparum
9.
PLoS Med ; 18(4): e1003576, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33891581

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) activity is dependent upon G6PD genotype and age of the red blood cell (RBC) population, with younger RBCs having higher activity. Peripheral parasitemia with Plasmodium spp. induces hemolysis, replacing older RBCs with younger cells with higher G6PD activity. This study aimed to assess whether G6PD activity varies between individuals with and without malaria or a history of malaria. METHODS AND FINDINGS: Individuals living in the Chittagong Hill Tracts of Bangladesh were enrolled into 3 complementary studies: (i) a prospective, single-arm clinical efficacy trial of patients (n = 175) with uncomplicated malaria done between 2014 and 2015, (ii) a cross-sectional survey done between 2015 and 2016 (n = 999), and (iii) a matched case-control study of aparasitemic individuals with and without a history of malaria done in 2020 (n = 506). G6PD activity was compared between individuals with and without malaria diagnosed by microscopy, rapid diagnostic test (RDT), or polymerase chain reaction (PCR), and in aparasitemic participants with and without a history of malaria. In the cross-sectional survey and clinical trial, 15.5% (182/1,174) of participants had peripheral parasitemia detected by microscopy or RDT, 3.1% (36/1,174) were positive by PCR only, and 81.4% (956/1,174) were aparasitemic. Aparasitemic individuals had significantly lower G6PD activity (median 6.9 U/g Hb, IQR 5.2-8.6) than those with peripheral parasitemia detected by microscopy or RDT (7.9 U/g Hb, IQR 6.6-9.8, p < 0.001), but G6PD activity similar to those with parasitemia detected by PCR alone (submicroscopic parasitemia) (6.1 U/g Hb, IQR 4.8-8.6, p = 0.312). In total, 7.7% (14/182) of patients with malaria had G6PD activity < 70% compared to 25.0% (248/992) of participants with submicroscopic or no parasitemia (odds ratio [OR] 0.25, 95% CI 0.14-0.44, p < 0.001). In the case-control study, the median G6PD activity was 10.3 U/g Hb (IQR 8.8-12.2) in 253 patients with a history of malaria and 10.2 U/g Hb (IQR 8.7-11.8) in 253 individuals without a history of malaria (p = 0.323). The proportion of individuals with G6PD activity < 70% was 11.5% (29/253) in the cases and 15.4% (39/253) in the controls (OR 0.7, 95% CI 0.41-1.23, p = 0.192). Limitations of the study included the non-contemporaneous nature of the clinical trial and cross-sectional survey. CONCLUSIONS: Patients with acute malaria had significantly higher G6PD activity than individuals without malaria, and this could not be accounted for by a protective effect of G6PD deficiency. G6PD-deficient patients with malaria may have higher than expected G6PD enzyme activity and an attenuated risk of primaquine-induced hemolysis compared to the risk when not infected.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Glucosefosfato Desidrogenase/metabolismo , Malária/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bangladesh/epidemiologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Estudos Transversais , Feminino , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Humanos , Lactente , Recém-Nascido , Malária/parasitologia , Masculino , Pessoa de Meia-Idade , Parasitemia/epidemiologia , Parasitemia/parasitologia , Adulto Jovem
10.
Malar J ; 20(1): 298, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215270

RESUMO

Burundi has experienced an increase in malaria cases since 2000, reaching 843,000 cases per million inhabitants in 2019, a more than twofold increase compared to the early 2000s. Burundi thus contrasts the decreasing number of cases in many other African countries. To evaluate the impact of malaria control on this increase, data on interventions from 2000 to 2019 were compiled. Over this period, the number of health facilities increased threefold, and the number of tests 20-fold. The test positivity rate remained stable at around 50-60% in most years. Artemisinin-based combination therapy was introduced in 2003, initially using artesunate-amodiaquine and changed to artemether-lumefantrine in 2019/2020. Mass distribution campaigns of insecticide-treated bed nets were conducted, and indoor residual spraying and intermittent preventive treatment in pregnancy introduced. Thus, the increase in cases was not the result of faltering control activities. Increased testing was likely a key contributor to higher case numbers. Despite the increase in testing, the test positivity rate remined high, indicating that current case numbers might still underestimate the true burden.


Assuntos
Antimaláricos/administração & dosagem , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Malária Falciparum/prevenção & controle , Burundi/epidemiologia , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão
11.
Malar J ; 20(1): 479, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930278

RESUMO

BACKGROUND: Plasmodium vivax blood-stage relapses originating from re-activating hypnozoites are a major barrier for control and elimination of this disease. Radical cure is a form of therapy capable of addressing this problem. Recent clinical trials of radical cure have yielded efficacy estimates ranging from 65 to 94%, with substantial variation across trial sites. METHODS: An analysis of simulated trial data using a transmission model was performed to demonstrate that variation in efficacy estimates across trial sites can arise from differences in the conditions under which trials are conducted. RESULTS: The analysis revealed that differences in transmission intensity, heterogeneous exposure and relapse rate can yield efficacy estimates ranging as widely as 12-78%, despite simulating trial data under the uniform assumption that treatment had a 75% chance of clearing hypnozoites. A longer duration of prophylaxis leads to a greater measured efficacy, particularly at higher transmission intensities, making the comparison between the protection of different radical cure treatment regimens against relapse more challenging. Simulations show that vector control and parasite genotyping offer two potential means to yield more standardized efficacy estimates that better reflect prevention of relapse. CONCLUSIONS: Site-specific biases are likely to contribute to variation in efficacy estimates both within and across clinical trials. Future clinical trials can reduce site-specific biases by conducting trials in low-transmission settings where re-infections from mosquito bite are less common, by preventing re-infections using vector control measures, or by identifying and excluding likely re-infections that occur during follow-up, by using parasite genotyping methods.


Assuntos
Ensaios Clínicos como Assunto/estatística & dados numéricos , Malária Vivax/prevenção & controle , Plasmodium vivax/efeitos dos fármacos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Geografia , Humanos , Pessoa de Meia-Idade , Modelos Teóricos , Adulto Jovem
12.
Malar J ; 20(1): 177, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836772

RESUMO

BACKGROUND: A goal of malaria epidemiological interventions is the detection and treatment of parasite reservoirs in endemic areas-an activity that is expected to reduce local transmission. Since the gametocyte is the only transmissible stage from human host to mosquito vector, this study evaluated the pre and post presence of gametocytes during a mass screening and treatment (MST) intervention conducted during 2013 in East Nusa Tenggara, Indonesia. METHODS: RT-qPCR targeting pfs25 and pvs25 transcripts-gametocyte molecular markers for Plasmodium falciparum and Plasmodium vivax, respectively, was performed to detect and quantify gametocytes in blood samples of P. falciparum and P. vivax-infected subjects over the course of the MST study. The presence of both asexual and sexual parasites in microscopic and submicroscopic infections was compared from the start and end of the MST, using proportion tests as well as parametric and non-parametric tests. RESULTS: Parasite prevalence remained unchanged for P. falciparum (6% = 52/811 versus 7% = 50/740, p = 0.838), and decreased slightly for P. vivax (24% = 192/811 versus 19% = 142/740, p = 0.035) between the MST baseline and endpoint. No significant difference was observed in gametocyte prevalence for either P. falciparum (2% = 19/803 versus 3% = 23/729, p = 0.353, OR = 1.34, 95%CI = 0.69-2.63), or P. vivax (7% = 49/744 versus 5% = 39/704, p = 0.442, OR = 0.83, 95%CI = 0.52-1.31). Even though there was an insignificant difference between the two time points, the majority of parasite positive subjects at the endpoint had been negative at baseline (P. falciparum: 66% = 29/44, P. vivax: 60% = 80/134). This was similarly demonstrated for the transmissible stage-where the majority of gametocyte positive subjects at the endpoint were negative at baseline (P. falciparum: 95% = 20/21, P. vivax: 94% = 30/32). These results were independent of treatment provided during MST activities. No difference was demonstrated in parasite and gametocyte density between both time points either in P. falciparum or P. vivax. CONCLUSION: In this study area, similar prevalence rates of P. falciparum and P. vivax parasites and gametocytes before and after MST, although in different individuals, points to a negligible impact on the parasite reservoir. Treatment administration based on parasite positivity as implemented in the MST should be reevaluated for the elimination strategy in the community. Trial registration Clinical trials registration NCT01878357. Registered 14 June 2013, https://www.clinicaltrials.gov/ct2/show/NCT01878357.


Assuntos
Portador Sadio/epidemiologia , Malária Falciparum/diagnóstico , Malária Vivax/diagnóstico , Programas de Rastreamento , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Portador Sadio/parasitologia , Criança , Pré-Escolar , Feminino , Humanos , Indonésia/epidemiologia , Lactente , Estudos Longitudinais , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Vivax/epidemiologia , Malária Vivax/prevenção & controle , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos , Adulto Jovem
13.
BMC Infect Dis ; 21(1): 44, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422001

RESUMO

BACKGROUND: Transmission stemming from asymptomatic infections is increasingly being recognized as a threat to malaria elimination. In many regions, malaria transmission is seasonal. It is not well understood whether Plasmodium falciparum modulates its investment in transmission to coincide with seasonal vector abundance. METHODS: We sampled 1116 asymptomatic individuals in the wet season, when vectors are abundant, and 1743 in the dry season, in two sites in western Kenya, representing different transmission intensities (Chulaimbo, moderate transmission, and Homa Bay, low transmission). Blood samples were screened for P. falciparum by qPCR, and gametocytes by pfs25 RT-qPCR. RESULTS: Parasite prevalence by qPCR was 27.1% (Chulaimbo, dry), 48.2% (Chulaimbo, wet), 9.4% (Homabay, dry), and 7.8% (Homabay, wet). Mean parasite densities did not differ between seasons (P = 0.562). pfs25 transcripts were detected in 119/456 (26.1%) of infections. In the wet season, fewer infections harbored detectable gametocytes (22.3% vs. 33.8%, P = 0.009), but densities were 3-fold higher (wet: 3.46 transcripts/uL, dry: 1.05 transcripts/uL, P < 0.001). In the dry season, 4.0% of infections carried gametocytes at moderate-to-high densities likely infective (> 1 gametocyte per 2 uL blood), compared to 7.9% in the wet season. Children aged 5-15 years harbored 76.7% of infections with gametocytes at moderate-to-high densities. CONCLUSIONS: Parasites increase their investment in transmission in the wet season, reflected by higher gametocyte densities. Despite increased gametocyte densities, parasite density remained similar across seasons and were often below the limit of detection of microscopy or rapid diagnostic test, thus a large proportion of infective infections would escape population screening in the wet season. Seasonal changes of gametocytemia in asymptomatic infections need to be considered when designing malaria control measures.


Assuntos
Portador Sadio/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Adolescente , Infecções Assintomáticas/epidemiologia , Portador Sadio/epidemiologia , Criança , Pré-Escolar , Feminino , Humanos , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/isolamento & purificação , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano
14.
J Med Internet Res ; 23(5): e22973, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33978590

RESUMO

BACKGROUND: Cholera poses a significant global health burden. In Bangladesh, cholera is endemic and causes more than 100,000 cases each year. Established environmental reservoirs leave millions at risk of infection through the consumption of contaminated water. The Global Task Force for Cholera Control has called for increased environmental surveillance to detect contaminated water sources prior to human infection in an effort to reduce cases and deaths. The OmniVis rapid cholera detection device uses loop-mediated isothermal amplification and particle diffusometry detection methods integrated into a handheld hardware device that attaches to an iPhone 6 to identify and map contaminated water sources. OBJECTIVE: The aim of this study was to evaluate the usability of the OmniVis device with targeted end users to advance the iterative prototyping process and ultimately design a device that easily integrates into users' workflow. METHODS: Water quality workers were trained to use the device and subsequently completed an independent device trial and usability questionnaire. Pretraining and posttraining knowledge assessments were administered to ensure training quality did not confound trial and questionnaire. RESULTS: Device trials identified common user errors and device malfunctions including incorrect test kit insertion and device powering issues. We did not observe meaningful differences in user errors or device malfunctions accumulated per participant across demographic groups. Over 25 trials, the mean time to complete a test was 47 minutes, a significant reduction compared with laboratory protocols, which take approximately 3 days. Overall, participants found the device easy to use and expressed confidence and comfort in using the device independently. CONCLUSIONS: These results are used to advance the iterative prototyping process of the OmniVis rapid cholera detection device so it can achieve user uptake, workflow integration, and scale to ultimately impact cholera control and elimination strategies. We hope this methodology will promote robust usability evaluations of rapid pathogen detection technologies in device development.


Assuntos
Cólera , Bangladesh , Cólera/diagnóstico , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Inquéritos e Questionários , Qualidade da Água
15.
Mol Ecol ; 29(23): 4525-4541, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32985031

RESUMO

Monitoring the genetic structure of pathogen populations may be an economical and sensitive approach to quantify the impact of control on transmission dynamics, highlighting the need for a better understanding of changes in population genetic parameters as transmission declines. Here we describe the first population genetic analysis of two major human malaria parasites, Plasmodium falciparum (Pf) and Plasmodium vivax (Pv), following nationwide distribution of long-lasting insecticide-treated nets (LLINs) in Papua New Guinea (PNG). Parasite isolates from pre- (2005-2006) and post-LLIN (2010-2014) were genotyped using microsatellite markers. Despite parasite prevalence declining substantially (East Sepik Province: Pf = 54.9%-8.5%, Pv = 35.7%-5.6%, Madang Province: Pf = 38.0%-9.0%, Pv: 31.8%-19.7%), genetically diverse and intermixing parasite populations remained. Pf diversity declined modestly post-LLIN relative to pre-LLIN (East Sepik: Rs  = 7.1-6.4, HE  = 0.77-0.71; Madang: Rs  = 8.2-6.1, HE  = 0.79-0.71). Unexpectedly, population structure present in pre-LLIN populations was lost post-LLIN, suggesting that more frequent human movement between provinces may have contributed to higher gene flow. Pv prevalence initially declined but increased again in one province, yet diversity remained high throughout the study period (East Sepik: Rs  = 11.4-9.3, HE  = 0.83-0.80; Madang: Rs  = 12.2-14.5, HE  = 0.85-0.88). Although genetic differentiation values increased between provinces over time, no significant population structure was observed at any time point. For both species, a decline in multiple infections and increasing clonal transmission and significant multilocus linkage disequilibrium post-LLIN were positive indicators of impact on the parasite population using microsatellite markers. These parameters may be useful adjuncts to traditional epidemiological tools in the early stages of transmission reduction.


Assuntos
Malária Falciparum , Malária , Variação Genética , Humanos , Malária Falciparum/epidemiologia , Repetições de Microssatélites , Papua Nova Guiné/epidemiologia , Plasmodium falciparum/genética , Plasmodium vivax/genética
16.
Malar J ; 19(1): 345, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967671

RESUMO

BACKGROUND: Surveillance of low-density infections and of exposure to vectors is crucial to understand where malaria elimination might be feasible, and where the risk of outbreaks is high. Archived rapid diagnostic tests (RDTs), used by national malaria control and elimination programs for clinical diagnosis, present a valuable, yet rarely used resource for in-depth studies on malaria epidemiology. METHODS: 1022 RDTs from two sub-Districts in Bangladesh (Alikadam and Kamalganj) were screened by qPCR for low-density Plasmodium falciparum and Plasmodium vivax infections, and by ELISA for Anopheles salivary gland antibodies as a marker for exposure to vectors. RESULTS: Concordance between RDT and qPCR was moderate. qPCR detected 31/1022 infections compared to 36/1022 diagnosed by RDT. Exposure to Anopheles was significantly higher in Kamalganj despite low transmission, which could be explained by low bed net use. CONCLUSIONS: Archived RDTs present a valuable source of antibodies for serological studies on exposure to vectors. In contrast, the benefit of screening archived RDTs to obtain a better estimate of clinical case numbers is moderate. Kamalganj could be prone to outbreaks.


Assuntos
Testes Diagnósticos de Rotina/estatística & dados numéricos , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Bangladesh/epidemiologia , Humanos , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Estudos Soroepidemiológicos
17.
Malar J ; 19(1): 354, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008438

RESUMO

BACKGROUND: Understanding local anopheline vector species and their bionomic traits, as well as related human factors, can help combat gaps in protection. METHODS: In San José de Chamanga, Esmeraldas, at the Ecuadorian Pacific coast, anopheline mosquitoes were sampled by both human landing collections (HLCs) and indoor-resting aspirations (IAs) and identified using both morphological and molecular methods. Human behaviour observations (HBOs) (including temporal location and bed net use) were documented during HLCs as well as through community surveys to determine exposure to mosquito bites. A cross-sectional evaluation of Plasmodium falciparum and Plasmodium vivax infections was conducted alongside a malaria questionnaire. RESULTS: Among 222 anopheline specimens captured, based on molecular analysis, 218 were Nyssorhynchus albimanus, 3 Anopheles calderoni (n = 3), and one remains unidentified. Anopheline mean human-biting rate (HBR) outdoors was (13.69), and indoors (3.38) (p = 0.006). No anophelines were documented resting on walls during IAs. HBO-adjusted human landing rates suggested that the highest risk of being bitten was outdoors between 18.00 and 20.00 h. Human behaviour-adjusted biting rates suggest that overall, long-lasting insecticidal bed nets (LLINs) only protected against 13.2% of exposure to bites, with 86.8% of exposure during the night spent outside of bed net protection. The malaria survey found 2/398 individuals positive for asymptomatic P. falciparum infections. The questionnaire reported high (73.4%) bed net use, with low knowledge of malaria. CONCLUSION: The exophagic feeding of anopheline vectors in San Jose de Chamanga, when analysed in conjunction with human behaviour, indicates a clear gap in protection even with high LLIN coverage. The lack of indoor-resting anophelines suggests that indoor residual spraying (IRS) may have limited effect. The presence of asymptomatic infections implies the presence of a human reservoir that may maintain transmission.


Assuntos
Culicidae/parasitologia , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Mosquitos Vetores/parasitologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anopheles/parasitologia , Criança , Pré-Escolar , Estudos Transversais , Equador/epidemiologia , Feminino , Humanos , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Plasmodium falciparum/fisiologia , Plasmodium vivax/fisiologia , Prevalência , Risco , Inquéritos e Questionários , Adulto Jovem
18.
Malar J ; 19(1): 319, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883308

RESUMO

BACKGROUND: The use of molecular diagnostics has revealed an unexpectedly large number of asymptomatic low-density malaria infections in many malaria endemic areas. This study compared the gains in parasite prevalence obtained by the use of ultra-sensitive (us)-qPCR as compared to standard qPCR in cross-sectional surveys conducted in Thailand, Brazil and Papua New Guinea (PNG). The compared assays differed in the copy number of qPCR targets in the parasite genome. METHODS: Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) parasites were quantified by qPCR amplifying the low-copy Pf_ and Pv_18S rRNA genes or the multi-copy targets Pf_varATS and Pv_mtCOX1. Cross-sectional surveys at the three study sites included 2252 participants of all ages and represented different transmission intensities. RESULTS: In the two low-transmission areas, P. falciparum positivity was 1.3% (10/773) (Thailand) and 0.8% (5/651) (Brazil) using standard Pf_18S rRNA qPCR. In these two countries, P. falciparum positivity by Pf_varATS us-qPCR increased to 1.9% (15/773) and 1.7% (11/651). In PNG, an area with moderate transmission intensity, P. falciparum positivity significantly increased from 8.6% (71/828) by standard qPCR to 12.2% (101/828) by us-qPCR. The proportions of P. falciparum infections not detected by standard qPCR were 33%, 55% and 30% in Thailand, Brazil and PNG. Plasmodium vivax was the predominating species in Thailand and Brazil, with 3.9% (30/773) and 4.9% (32/651) positivity by Pv_18S rRNA qPCR. In PNG, P. vivax positivity was similar to P. falciparum, at 8.0% (66/828). Use of Pv_mtCOX1 us-qPCR led to a significant increase in positivity to 5.1% (39/773), 6.4% (42/651) and 11.5% (95/828) in Thailand, Brazil, and PNG. The proportions of P. vivax infections missed by standard qPCR were similar at all three sites, with 23%, 24% and 31% in Thailand, Brazil and PNG. CONCLUSION: The proportional gains in the detection of P. falciparum and P. vivax infections by ultra-sensitive diagnostic assays were substantial at all three study sites. Thus, us-qPCR yields more precise prevalence estimates for both P. falciparum and P. vivax at all studied levels of endemicity and represents a significant diagnostic improvement. Improving sensitivity in P. vivax surveillance by us-qPCR is of particular benefit, because the additionally detected P. vivax infections signal the potential presence of hypnozoites and subsequent risk of relapse and further transmission.


Assuntos
Estudos Transversais/métodos , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Brasil/epidemiologia , Malária Falciparum/transmissão , Malária Vivax/transmissão , Papua Nova Guiné/epidemiologia , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Prevalência , Sensibilidade e Especificidade , Tailândia/epidemiologia
19.
Malar J ; 18(1): 340, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31590661

RESUMO

BACKGROUND: G6PD enzyme deficiency is a common enzymatic X-linked disorder. Deficiency of the G6PD enzyme can cause free radical-mediated oxidative damage to red blood cells, leading to premature haemolysis. Treatment of Plasmodium vivax malaria with primaquine poses a potential risk of mild to severe acute haemolytic anaemia in G6PD deficient people. In this study, the prevalence and distribution of G6PD mutations were investigated across broad areas of Ethiopia, and tested the association between G6PD genotype and phenotype with the goal to provide additional information relevant to the use of primaquine in malaria treatment. METHODS: This study examined G6PD mutations in exons 3-11 for 344 febrile patient samples collected from seven sites across Ethiopia. In addition, the G6PD enzyme level of 400 febrile patient samples from Southwestern Ethiopia was determined by the CareStart™ biosensor. The association between G6PD phenotype and genotype was examined by Fisher exact test on a subset of 184 samples. RESULTS: Mutations were observed at three positions of the G6PD gene. The most common G6PD mutation across all sites was A376G, which was detected in 21 of 344 (6.1%) febrile patients. Thirteen of them were homozygous and eight were heterozygous for this mutation. The G267+119C/T mutation was found in 4 (1.2%) individuals in South Ethiopia, but absent in other sites. The G1116A mutation was also found in 4 (1.2%) individuals from East and South Ethiopia. For the 400 samples in the south, 17 (4.25%) were shown to be G6PD-deficient. G6PD enzyme level was not significantly different by age or gender. Among a subset of 202 febrile patients who were diagnosed with malaria, 11 (5.45%) were G6PD-deficient. These 11 infected samples were diagnosed with Plasmodium vivax by microscopy. Parasitaemia was not significantly different between the G6PD-deficient and G6PD-normal infections. CONCLUSIONS: The prevalence of G6PD deficiency is modest among febrile patients in Ethiopia. G6PD deficiency testing is thus recommended before administrating primaquine for radical cure of P. vivax infected patients. The present study did not indicate a significant association between G6PD gene mutations and enzyme levels.


Assuntos
Antimaláricos/uso terapêutico , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Malária Vivax/prevenção & controle , Primaquina/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antimaláricos/efeitos adversos , Criança , Pré-Escolar , Etiópia/epidemiologia , Feminino , Genótipo , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Fenótipo , Prevalência , Primaquina/efeitos adversos , Adulto Jovem
20.
Clin Infect Dis ; 67(9): 1364-1372, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29579195

RESUMO

Background: Mass screening and treatment (MST) aims to reduce malaria risk in communities by identifying and treating infected persons without regard to illness. Methods: A cluster-randomized trial evaluated malaria incidence with and without MST. Clusters were randomized to 3, 2, or no MST interventions: MST3, 6 clusters (156 households/670 individuals); MST2, 5 clusters (89 households/423 individuals); and MST0, 5 clusters (174 households/777 individuals). All clusters completed the study with 14 residents withdrawing. In a cohort of 324 schoolchildren (MST3, n = 124; MST2, n = 57; MST0, n = 143) negative by microscopy at enrollment, we evaluated the incidence density of malaria during 3 months of MST and 3 months following. The MST intervention involved community-wide expert malaria microscopic screening and standard therapy with dihydroartemisinin-piperaquine and primaquine for glucose-6 phosphate dehydrogenase-normal subjects. All blood examinations included polymerase chain reaction assays, which did not guide on-site treatment. Results: The risk ratios for incidence density of microscopically patent malaria in MST3 or MST2 relative to that in MST0 clusters were 1.00 (95% confidence interval [CI], .53-1.91) and 1.22 (95% CI, .42-3.55), respectively. Similar results were obtained with molecular analysis and species-specific (P. falciparum and P. vivax) infections. Microscopically subpatent, untreated infections accounted for 72% of those infected. Conclusions: Two or 3 rounds of MST within 3 months did not impact the force of anopheline mosquito-borne infection in these communities. The high rate of untreated microscopically subpatent infections likely explains the observed poor impact. Clinical Trials Registration: NCT01878357.


Assuntos
Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Malária/transmissão , Programas de Rastreamento , Adulto , Análise por Conglomerados , Quimioterapia Combinada , Feminino , Humanos , Incidência , Indonésia , Malária/diagnóstico , Masculino , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA