Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 148(5): 405-425, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37409482

RESUMO

BACKGROUND: Adeno-associated virus (AAV) has emerged as one of the best tools for cardiac gene delivery due to its cardiotropism, long-term expression, and safety. However, a significant challenge to its successful clinical use is preexisting neutralizing antibodies (NAbs), which bind to free AAVs, prevent efficient gene transduction, and reduce or negate therapeutic effects. Here we describe extracellular vesicle-encapsulated AAVs (EV-AAVs), secreted naturally by AAV-producing cells, as a superior cardiac gene delivery vector that delivers more genes and offers higher NAb resistance. METHODS: We developed a 2-step density-gradient ultracentrifugation method to isolate highly purified EV-AAVs. We compared the gene delivery and therapeutic efficacy of EV-AAVs with an equal titer of free AAVs in the presence of NAbs, both in vitro and in vivo. In addition, we investigated the mechanism of EV-AAV uptake in human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and mouse models in vivo using a combination of biochemical techniques, flow cytometry, and immunofluorescence imaging. RESULTS: Using cardiotropic AAV serotypes 6 and 9 and several reporter constructs, we demonstrated that EV-AAVs deliver significantly higher quantities of genes than AAVs in the presence of NAbs, both to human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and to mouse hearts in vivo. Intramyocardial delivery of EV-AAV9-sarcoplasmic reticulum calcium ATPase 2a to infarcted hearts in preimmunized mice significantly improved ejection fraction and fractional shortening compared with AAV9-sarcoplasmic reticulum calcium ATPase 2a delivery. These data validated NAb evasion by and therapeutic efficacy of EV-AAV9 vectors. Trafficking studies using human induced pluripotent stem cell-derived cells in vitro and mouse hearts in vivo showed significantly higher expression of EV-AAV6/9-delivered genes in cardiomyocytes compared with noncardiomyocytes, even with comparable cellular uptake. Using cellular subfraction analyses and pH-sensitive dyes, we discovered that EV-AAVs were internalized into acidic endosomal compartments of cardiomyocytes for releasing and acidifying AAVs for their nuclear uptake. CONCLUSIONS: Together, using 5 different in vitro and in vivo model systems, we demonstrate significantly higher potency and therapeutic efficacy of EV-AAV vectors compared with free AAVs in the presence of NAbs. These results establish the potential of EV-AAV vectors as a gene delivery tool to treat heart failure.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Dependovirus/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Vetores Genéticos , Células-Tronco Pluripotentes Induzidas/metabolismo , Anticorpos Neutralizantes , Vesículas Extracelulares/metabolismo
2.
Circulation ; 144(6): 441-454, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34024116

RESUMO

BACKGROUND: Arginine (Arg) 14 deletion (R14del) in the calcium regulatory protein phospholamban (hPLNR14del) has been identified as a disease-causing mutation in patients with an inherited cardiomyopathy. Mechanisms underlying the early arrhythmogenic phenotype that predisposes carriers of this mutation to sudden death with no apparent structural remodeling remain unclear. METHODS: To address this, we performed high spatiotemporal resolution optical mapping of intact hearts from adult knock-in mice harboring the human PLNWT (wildtype [WT], n=12) or the heterozygous human PLNR14del mutation (R14del, n=12) before and after ex vivo challenge with isoproterenol and rapid pacing. RESULTS: Adverse electrophysiological remodeling was evident in the absence of significant structural or hemodynamic changes. R14del hearts exhibited increased arrhythmia susceptibility compared with wildtype. Underlying this susceptibility was preferential right ventricular action potential prolongation that was unresponsive to ß-adrenergic stimulation. A steep repolarization gradient at the left ventricular/right ventricular interface provided the substrate for interventricular activation delays and ultimately local conduction block during rapid pacing. This was followed by the initiation of macroreentrant circuits supporting the onset of ventricular tachycardia. Once sustained, these circuits evolved into high-frequency rotors, which in their majority were pinned to the right ventricle. These rotors exhibited unique spatiotemporal dynamics that promoted their increased stability in R14del compared with wildtype hearts. CONCLUSIONS: Our findings highlight the crucial role of primary electric remodeling caused by the hPLNR14del mutation. These inherently arrhythmogenic features form the substrate for adrenergic-mediated VT at early stages of PLNR14del induced cardiomyopathy.


Assuntos
Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiologia , Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/complicações , Cardiomiopatias/genética , Suscetibilidade a Doenças , Deleção de Sequência , Potenciais de Ação , Alelos , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Eletrocardiografia , Loci Gênicos , Predisposição Genética para Doença , Testes de Função Cardíaca , Humanos , Camundongos , Camundongos Transgênicos
3.
Mol Ther ; 28(2): 394-410, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31879190

RESUMO

Inhibition of pulmonary fibrosis (PF) by restoring sarco/endoplasmic reticulum calcium ATPase 2a isoform (SERCA2a) expression using targeted gene therapy may be a potentially powerful new treatment approach for PF. Here, we found that SERCA2a expression was significantly decreased in lung samples from patients with PF and in the bleomycin (BLM) mouse model of PF. In the BLM-induced PF model, intratracheal aerosolized adeno-associated virus serotype 1 (AAV1) encoding for human SERCA2a (AAV1.hSERCA2a) reduces lung fibrosis and associated vascular remodeling. SERCA2a gene therapy also decreases right ventricular pressure and hypertrophy in both prevention and curative protocols. In vitro, we observed that SERCA2a overexpression inhibits fibroblast proliferation, migration, and fibroblast-to-myofibroblast transition induced by transforming growth factor ß (TGF-ß1). Thus, pro-fibrotic gene expression is prevented by blocking nuclear factor κB (NF-κB)/interleukin-6 (IL-6)-induced signal transducer and activator of transcription 3 (STAT3) activation. This effect is signaled toward an inhibitory mechanism of small mother against decapentaplegic (SMAD)/TGF-ß signaling through the repression of OTU deubiquitinase, ubiquitin aldehyde binding 1 (OTUB1) and Forkhead box M1 (FOXM1). Interestingly, this cross-inhibition leads to an increase of SKI and SnoN expression, an auto-inhibitory feedback loop of TGF-ß signaling. Collectively, our results demonstrate that SERCA2a gene transfer attenuates bleomycin (BLM)-induced PF by blocking the STAT3/FOXM1 pathway and promoting the SNON/SKI Axis. Thus, SERCA2a gene therapy may be a potential therapeutic target for PF.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Transdução de Sinais , Animais , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Proteína Forkhead Box M1/metabolismo , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fibrose Pulmonar/terapia , Fator de Transcrição STAT3/metabolismo
4.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502015

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating lung disease characterized by the progressive obstruction of the distal pulmonary arteries (PA). Structural and functional alteration of pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) contributes to PA wall remodeling and vascular resistance, which may lead to maladaptive right ventricular (RV) failure and, ultimately, death. Here, we found that decreased expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) in the lung samples of PAH patients was associated with the down-regulation of bone morphogenetic protein receptor type 2 (BMPR2) and the activation of signal transducer and activator of transcription 3 (STAT3). Our results showed that the antiproliferative properties of SERCA2a are mediated through the STAT3/BMPR2 pathway. At the molecular level, transcriptome analysis of PASMCs co-overexpressing SERCA2a and BMPR2 identified STAT3 amongst the most highly regulated transcription factors. Using a specific siRNA and a potent pharmacological STAT3 inhibitor (STAT3i, HJC0152), we found that SERCA2a potentiated BMPR2 expression by repressing STAT3 activity in PASMCs and PAECs. In vivo, we used a validated and efficient model of severe PAH induced by unilateral left pneumonectomy combined with monocrotaline (PNT/MCT) to further evaluate the therapeutic potential of single and combination therapies using adeno-associated virus (AAV) technology and a STAT3i. We found that intratracheal delivery of AAV1 encoding SERCA2 or BMPR2 alone or STAT3i was sufficient to reduce the mean PA pressure and vascular remodeling while improving RV systolic pressures, RV ejection fraction, and cardiac remodeling. Interestingly, we found that combined therapy of AAV1.hSERCA2a with AAV1.hBMPR2 or STAT3i enhanced the beneficial effects of SERCA2a. Finally, we used cardiac magnetic resonance imaging to measure RV function and found that therapies using AAV1.hSERCA2a alone or combined with STAT3i significantly inhibited RV structural and functional changes in PNT/MCT-induced PAH. In conclusion, our study demonstrated that combination therapies using SERCA2a gene transfer with a STAT3 inhibitor could represent a new promising therapeutic alternative to inhibit PAH and to restore BMPR2 expression by limiting STAT3 activity.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Pulmão/efeitos dos fármacos , Hipertensão Arterial Pulmonar/tratamento farmacológico , RNA Interferente Pequeno/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Terapia Genética , Humanos , Pulmão/metabolismo , Pulmão/patologia , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , RNA Interferente Pequeno/uso terapêutico , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/genética , Remodelação Vascular/efeitos dos fármacos
5.
Circulation ; 139(4): 518-532, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29997116

RESUMO

BACKGROUND: Despite its functional importance in various fundamental bioprocesses, studies of N6-methyladenosine (m6A) in the heart are lacking. Here, we show that the FTO (fat mass and obesity-associated protein), an m6A demethylase, plays a critical role in cardiac contractile function during homeostasis, remodeling, and regeneration. METHODS: We used clinical human samples, preclinical pig and mouse models, and primary cardiomyocyte cell cultures to study the functional role of m6A and FTO in the heart and in cardiomyocytes. We modulated expression of FTO by using adeno-associated virus serotype 9 (in vivo), adenovirus (both in vivo and in vitro), and small interfering RNAs (in vitro) to study its function in regulating cardiomyocyte m6A, calcium dynamics and contractility, and cardiac function postischemia. We performed methylated (m6A) RNA immunoprecipitation sequencing to map transcriptome-wide m6A, and methylated (m6A) RNA immunoprecipitation quantitative polymerase chain reaction assays to map and validate m6A in individual transcripts, in healthy and failing hearts, and in myocytes. RESULTS: We discovered that FTO has decreased expression in failing mammalian hearts and hypoxic cardiomyocytes, thereby increasing m6A in RNA and decreasing cardiomyocyte contractile function. Improving expression of FTO in failing mouse hearts attenuated the ischemia-induced increase in m6A and decrease in cardiac contractile function. This is performed by the demethylation activity of FTO, which selectively demethylates cardiac contractile transcripts, thus preventing their degradation and improving their protein expression under ischemia. In addition, we demonstrate that FTO overexpression in mouse models of myocardial infarction decreased fibrosis and enhanced angiogenesis. CONCLUSIONS: Collectively, our study demonstrates the functional importance of the FTO-dependent cardiac m6A methylome in cardiac contraction during heart failure and provides a novel mechanistic insight into the therapeutic mechanisms of FTO.


Assuntos
Adenosina/análogos & derivados , Insuficiência Cardíaca/enzimologia , Infarto do Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Regeneração , Função Ventricular Esquerda , Remodelação Ventricular , Adenosina/metabolismo , Adulto , Idoso , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Sinalização do Cálcio , Estudos de Casos e Controles , Linhagem Celular , Proliferação de Células , Desmetilação , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Sus scrofa
6.
J Mol Cell Cardiol ; 127: 20-30, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30502350

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) results in right ventricular (RV) failure, electro-mechanical dysfunction and heightened risk of sudden cardiac death (SCD), although exact mechanisms and predisposing factors remain unclear. Because impaired chronotropic response to exercise is a strong predictor of early mortality in patients with PAH, we hypothesized that progressive elevation in heart rate can unmask ventricular tachyarrhythmias (VT) in a rodent model of monocrotaline (MCT)-induced PAH. We further hypothesized that intra-tracheal gene delivery of aerosolized AAV1.SERCA2a (AAV1.S2a), an approach which improves pulmonary vascular remodeling in PAH, can suppress VT in this model. OBJECTIVE: To determine the efficacy of pulmonary AAV1.S2a in reversing electrophysiological (EP) remodeling and suppressing VT in PAH. METHODS: Male rats received subcutaneous injection of MCT (60 mg/kg) leading to advanced PAH. Three weeks following MCT, rats underwent intra-tracheal delivery of aerosolized AAV1.S2a (MCT + S2a, N = 8) or saline (MCT, N = 9). Age-matched rats served as controls (CTRL, N = 7). The EP substrate and risk of VT were determined using high-resolution optical action potential (AP) mapping ex vivo. The expression levels of key ion channel subunits, fibrosis markers and hypertrophy indices were measured by RT-PCR and histochemical analyses. RESULTS: Over 80% of MCT but none of the CTRL hearts were prone to sustained VT by rapid pacing (P < .01). Aerosolized gene delivery of AAV1.S2a to the lung suppressed the incidence of VT to <15% (P < .05). Investigation of the EP substrate revealed marked prolongation of AP duration (APD), increased APD heterogeneity, a reversal in the trans-epicardial APD gradient, and marked conduction slowing in untreated MCT compared to CTRL hearts. These myocardial EP changes coincided with major remodeling in the expression of K and Ca channel subunits, decreased expression of Cx43 and increased expression of pro-fibrotic and pro-hypertrophic markers. Intra-tracheal gene delivery of aerosolized AAV1 carrying S2a but not luciferase resulted in selective upregulation of the human isoform of SERCA2a in the lung but not the heart. This pulmonary intervention, in turn, ameliorated MCT-induced APD prolongation, reversed spatial APD heterogeneity, normalized myocardial conduction, and suppressed the incidence of pacing-induced VT. Comparison of the minimal conduction velocity (CV) generated at the fastest pacing rate before onset of VT or at the end of the protocol revealed significantly lower values in untreated compared to AAV1.S2a treated PAH and CTRL hearts. Reversal of EP remodeling by pulmonary AAV1.S2a gene delivery was accompanied by restored expression of key ion channel transcripts. Restored expression of Cx43 and collagen but not the pore-forming Na channel subunit Nav1.5 likely ameliorated VT by improving CV at rapid rates in PAH. CONCLUSION: Aerosolized AAV1.S2a gene delivery selectively to the lungs ameliorates myocardial EP remodeling and VT susceptibility at rapid heart rates. Our findings highlight for the first time the utility of a non-cardiac gene therapy approach for arrhythmia suppression.


Assuntos
Aerossóis/administração & dosagem , Arritmias Cardíacas/terapia , Técnicas de Transferência de Genes , Hipertensão Arterial Pulmonar/terapia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/uso terapêutico , Traqueia/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/fisiopatologia , Conexina 43/metabolismo , Modelos Animais de Doenças , Terapia Genética , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Masculino , Canais de Potássio/genética , Canais de Potássio/metabolismo , Hipertensão Arterial Pulmonar/complicações , Hipertensão Arterial Pulmonar/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
7.
J Gene Med ; 20(12): e3060, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30393908

RESUMO

BACKGROUND: Cardiac gene therapy using the adeno-associated virus serotype 9 vector is widely used because of its efficient transduction. However, the promoters used to drive expression often cause off-target localization. To overcome this, studies have applied cardiac-specific promoters, although expression is debilitated compared to that of ubiquitous promoters. To address these issues in the context of atrial-specific gene expression, an enhancer calsequestrin cis-regulatory module 4 (CRM4) and the highly atrial-specific promoter sarcolipin were combined to enhance expression and minimize off tissue expression. METHODS: To observe expression and bio-distribution, constructs were generated using two different reporter genes: luciferase and enhanced green fluorescent protein (EGFP). The ubiquitous cytomegalovirus (CMV), sarcolipin (SLN) and CRM4 combined with sarcolipin (CRM4.SLN) were compared and analyzed using the luciferase assay, western blotting, a quantitative polymerase chain reaction and fluorescence imaging. RESULTS: The CMV promoter containing vectors showed the strongest expression in vitro and in vivo. However, the module SLN combination showed enhanced atrial expression and a minimized off-target effect even when compared with the individual SLN promoter. CONCLUSIONS: For gene therapy involving atrial gene transfer, the CRM4.SLN combination is a promising alternative to the use of the CMV promoter. CRM4.SLN had significant atrial expression and minimized extra-atrial expression.


Assuntos
Calsequestrina/genética , Regulação da Expressão Gênica , Átrios do Coração/metabolismo , Proteínas Musculares/genética , Regiões Promotoras Genéticas/genética , Proteolipídeos/genética , Animais , Calsequestrina/metabolismo , Citomegalovirus/genética , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Humanos , Luciferases/genética , Luciferases/metabolismo , Camundongos , Proteínas Musculares/metabolismo , Proteolipídeos/metabolismo , Transfecção
8.
Circulation ; 133(15): 1458-71; discussion 1471, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26936863

RESUMO

BACKGROUND: Stromal interaction molecule 1 (STIM1) is a dynamic calcium signal transducer implicated in hypertrophic growth of cardiomyocytes. STIM1 is thought to act as an initiator of cardiac hypertrophic response at the level of the sarcolemma, but the pathways underpinning this effect have not been examined. METHODS AND RESULTS: To determine the mechanistic role of STIM1 in cardiac hypertrophy and during the transition to heart failure, we manipulated STIM1 expression in mice cardiomyocytes by using in vivo gene delivery of specific short hairpin RNAs. In 3 different models, we found that Stim1 silencing prevents the development of pressure overload-induced hypertrophy but also reverses preestablished cardiac hypertrophy. Reduction in STIM1 expression promoted a rapid transition to heart failure. We further showed that Stim1 silencing resulted in enhanced activity of the antihypertrophic and proapoptotic GSK-3ß molecule. Pharmacological inhibition of glycogen synthase kinase-3 was sufficient to reverse the cardiac phenotype observed after Stim1 silencing. At the level of ventricular myocytes, Stim1 silencing or inhibition abrogated the capacity for phosphorylation of Akt(S473), a hydrophobic motif of Akt that is directly phosphorylated by mTOR complex 2. We found that Stim1 silencing directly impaired mTOR complex 2 kinase activity, which was supported by a direct interaction between STIM1 and Rictor, a specific component of mTOR complex 2. CONCLUSIONS: These data support a model whereby STIM1 is critical to deactivate a key negative regulator of cardiac hypertrophy. In cardiomyocytes, STIM1 acts by tuning Akt kinase activity through activation of mTOR complex 2, which further results in repression of GSK-3ß activity.


Assuntos
Canais de Cálcio/fisiologia , Complexos Multiproteicos/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Motivos de Aminoácidos , Animais , Canais de Cálcio/química , Canais de Cálcio/genética , Sinalização do Cálcio/fisiologia , Cardiomegalia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/química , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Insuficiência Cardíaca , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/genética , Proteína Companheira de mTOR Insensível à Rapamicina , Molécula 1 de Interação Estromal , Serina-Treonina Quinases TOR/metabolismo , Remodelação Ventricular/fisiologia
9.
Am J Physiol Heart Circ Physiol ; 311(6): H1540-H1559, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27694219

RESUMO

The forkhead box O3a (FOXO3a) transcription factor has been shown to regulate glucose metabolism, muscle atrophy, and cell death in postmitotic cells. Its role in regulation of mitochondrial and myocardial function is not well studied. Based on previous work, we hypothesized that FOXO3a, through BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3), modulates mitochondrial morphology and function in heart failure (HF). We modulated the FOXO3a-BNIP3 pathway in normal and phenylephrine (PE)-stressed adult cardiomyocytes (ACM) in vitro and developed a cardiotropic adeno-associated virus serotype 9 encoding dominant-negative FOXO3a (AAV9.dn-FX3a) for gene delivery in a rat model of HF with preserved ejection fraction (HFpEF). We found that FOXO3a upregulates BNIP3 expression in normal and PE-stressed ACM, with subsequent increases in mitochondrial Ca2+, leading to decreased mitochondrial membrane potential, mitochondrial fragmentation, and apoptosis. Whereas dn-FX3a attenuated the increase in BNIP3 expression and its consequences in PE-stressed ACM, AAV9.dn-FX3a delivery in an experimental model of HFpEF decreased BNIP3 expression, reversed adverse left ventricular remodeling, and improved left ventricular systolic and, particularly, diastolic function, with improvements in mitochondrial structure and function. Moreover, AAV9.dn-FX3a restored phospholamban phosphorylation at S16 and enhanced dynamin-related protein 1 phosphorylation at S637. Furthermore, FOXO3a upregulates maladaptive genes involved in mitochondrial apoptosis, autophagy, and cardiac atrophy. We conclude that FOXO3a activation in cardiac stress is maladaptive, in that it modulates Ca2+ cycling, Ca2+ homeostasis, and mitochondrial dynamics and function. Our results suggest an important role of FOXO3a in HF, making it an attractive potential therapeutic target.


Assuntos
Cálcio/metabolismo , Proteína Forkhead Box O3/genética , Insuficiência Cardíaca/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Western Blotting , Proteínas de Ligação ao Cálcio/metabolismo , Sobrevivência Celular , Citrato (si)-Sintase/metabolismo , Modelos Animais de Doenças , Dinaminas/metabolismo , Ecocardiografia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Retículo Endoplasmático/metabolismo , Imunofluorescência , Proteína Forkhead Box O3/metabolismo , Insuficiência Cardíaca/fisiopatologia , Técnicas In Vitro , Masculino , Potencial da Membrana Mitocondrial , Microscopia Eletrônica de Transmissão , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Fenilefrina/farmacologia , Fosforilação , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico , Volume Sistólico , Simpatomiméticos/farmacologia , Função Ventricular Esquerda/genética , Remodelação Ventricular
10.
Gene Ther ; 21(4): 379-386, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24572786

RESUMO

Adeno-associated virus (AAV)-based vectors are promising vehicles for therapeutic gene delivery, including for the treatment for heart failure. It has been demonstrated for each of the AAV serotypes 1 through 8 that inhibition of the proteasome results in increased transduction efficiencies. For AAV9, however, the effect of proteasome inhibitors on in vivo transduction has until now not been evaluated. Here we demonstrate, in a well-established rodent heart failure model, that concurrent treatment with the proteasome inhibitor bortezomib does not enhance the efficacy of AAV9.SERCA2a to improve cardiac function as examined by echocardiography and pressure volume analysis. Western blot analysis of SERCA2a protein and reverse transcription-PCR of SERCA2a mRNA demonstrated that bortezomib had no effect on either endogenous rat SERCA2a levels nor on expression levels of human SERCA2a delivered by AAV9.SERCA2a. Similarly, the number of AAV9 genomes in heart samples was unaffected by bortezomib treatment. Interestingly, whereas transduction of HeLa cells and neonatal rat cardiomyocytes by AAV9 was stimulated by bortezomib, transduction of adult rat cardiomyocytes was inhibited. These results indicate an organ/cell-type-specific effect of proteasome inhibition on AAV9 transduction. A future detailed analysis of the underlying molecular mechanisms promises to facilitate the development of improved AAV vectors.


Assuntos
Ácidos Borônicos/administração & dosagem , Terapia Genética , Insuficiência Cardíaca/terapia , Miócitos Cardíacos/metabolismo , Pirazinas/administração & dosagem , Animais , Bortezomib , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos , Insuficiência Cardíaca/genética , Humanos , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Ratos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese
11.
Circulation ; 128(5): 512-23, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23804254

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by dysregulated proliferation of pulmonary artery smooth muscle cells leading to (mal)adaptive vascular remodeling. In the systemic circulation, vascular injury is associated with downregulation of sarcoplasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) and alterations in Ca(2+) homeostasis in vascular smooth muscle cells that stimulate proliferation. We, therefore, hypothesized that downregulation of SERCA2a is permissive for pulmonary vascular remodeling and the development of PAH. METHODS AND RESULTS: SERCA2a expression was decreased significantly in remodeled pulmonary arteries from patients with PAH and the rat monocrotaline model of PAH in comparison with controls. In human pulmonary artery smooth muscle cells in vitro, SERCA2a overexpression by gene transfer decreased proliferation and migration significantly by inhibiting NFAT/STAT3. Overexpresion of SERCA2a in human pulmonary artery endothelial cells in vitro increased endothelial nitric oxide synthase expression and activation. In monocrotaline rats with established PAH, gene transfer of SERCA2a via intratracheal delivery of aerosolized adeno-associated virus serotype 1 (AAV1) carrying the human SERCA2a gene (AAV1.SERCA2a) decreased pulmonary artery pressure, vascular remodeling, right ventricular hypertrophy, and fibrosis in comparison with monocrotaline-PAH rats treated with a control AAV1 carrying ß-galactosidase or saline. In a prevention protocol, aerosolized AAV1.SERCA2a delivered at the time of monocrotaline administration limited adverse hemodynamic profiles and indices of pulmonary and cardiac remodeling in comparison with rats administered AAV1 carrying ß-galactosidase or saline. CONCLUSIONS: Downregulation of SERCA2a plays a critical role in modulating the vascular and right ventricular pathophenotype associated with PAH. Selective pulmonary SERCA2a gene transfer may offer benefit as a therapeutic intervention in PAH.


Assuntos
Hipertensão Pulmonar/terapia , Monocrotalina/toxicidade , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/uso terapêutico , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Hipertensão Pulmonar Primária Familiar , Técnicas de Transferência de Genes , Células HEK293 , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/enzimologia , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Resultado do Tratamento
12.
Viruses ; 16(3)2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543807

RESUMO

Today, adeno-associated virus (AAV)-based vectors are arguably the most promising in vivo gene delivery vehicles for durable therapeutic gene expression. Advances in molecular engineering, high-throughput screening platforms, and computational techniques have resulted in a toolbox of capsid variants with enhanced performance over parental serotypes. Despite their considerable promise and emerging clinical success, there are still obstacles hindering their broader use, including limited transduction capabilities, tissue/cell type-specific tropism and penetration into tissues through anatomical barriers, off-target tissue biodistribution, intracellular degradation, immune recognition, and a lack of translatability from preclinical models to clinical settings. Here, we first describe the transduction mechanisms of natural AAV serotypes and explore the current understanding of the systemic and cellular hurdles to efficient transduction. We then outline progress in developing designer AAV capsid variants, highlighting the seminal discoveries of variants which can transduce the central nervous system upon systemic administration, and, to a lesser extent, discuss the targeting of the peripheral nervous system, eye, ear, lung, liver, heart, and skeletal muscle, emphasizing their tissue and cell specificity and translational promise. In particular, we dive deeper into the molecular mechanisms behind their enhanced properties, with a focus on their engagement with host cell receptors previously inaccessible to natural AAV serotypes. Finally, we summarize the main findings of our review and discuss future directions.


Assuntos
Capsídeo , Dependovirus , Capsídeo/metabolismo , Dependovirus/metabolismo , Sorogrupo , Distribuição Tecidual , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Tropismo , Vetores Genéticos/genética
13.
Mol Ther ; 20(1): 73-83, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21915102

RESUMO

Adeno-associated virus (AAV)-based vectors are promising gene delivery vehicles for human gene transfer. One significant obstacle to AAV-based gene therapy is the high prevalence of neutralizing antibodies in humans. Until now, it was thought that, except for nonhuman primates, pre-existing neutralizing antibodies are not a problem in small or large animal models for gene therapy. Here, we demonstrate that sera of several animal models of cardiovascular diseases harbor pre-existing antibodies against the cardiotropic AAV serotypes AAV1, AAV6, and AAV9 and against AAV2. The neutralizing antibody titers vary widely both between species and between serotypes. Of all species tested, rats displayed the lowest levels of neutralizing antibodies. Surprisingly, naive mice obtained directly from commercial vendors harbored neutralizing antibodies. Of the large animal models tested, the neutralization of AAV6 transduction by dog sera was especially pronounced. Sera of sheep and rabbits showed modest neutralization of AAV transduction whereas porcine sera strongly inhibited transduction by all AAV serotypes and displayed the largest variation between individual animals. Importantly, neutralizing antibody titers as low as 1/4 completely prevented in vivo transduction by AAV9 in rats. Our results suggest that prescreening of animals for neutralizing antibodies will be important for future gene transfer experiments in these animal models.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Dependovirus/imunologia , Animais , Anticorpos Neutralizantes/isolamento & purificação , Dependovirus/classificação , Cães , Técnicas de Transferência de Genes , Vetores Genéticos/imunologia , Células HEK293 , Humanos , Masculino , Camundongos , Testes de Neutralização , Coelhos , Ratos , Ratos Sprague-Dawley , Sorotipagem , Ovinos/imunologia , Suínos/imunologia , Transdução Genética
14.
J Mol Cell Cardiol ; 53(2): 223-32, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22668785

RESUMO

Stem cell and gene therapies are being pursued as strategies for repairing damaged cardiac tissue following myocardial infarction in an attempt to prevent heart failure. The chemokine receptor-4 (CXCR4) and its ligand, CXCL12, play a critical role in stem cell recruitment post-acute myocardial infarction. Whereas progenitor cell migration via the CXCL12/CXCR4 axis is well characterized, little is known about the molecular mechanisms of CXCR4 mediated modulation of cardiac hypertrophy and failure. We used gene therapy to test the effects of CXCR4 gene delivery on adverse ventricular remodeling due to pressure overload. We assessed the effect of cardiac overexpression of CXCR4 during trans-aortic constriction (TAC) using a cardiotropic adeno-associated viral vector (AAV9) carrying the CXCR4 gene. Cardiac overexpression of CXCR4 in mice with pressure overload prevented ventricular remodeling, preserved capillary density and maintained function as determined by echocardiography and in vivo hemodynamics. In isolated adult rat cardiac myocytes, CXCL12 treatment prevented isoproterenol induced hypertrophy and interrupted the calcineurin/NFAT pathway. Finally, a complex involving the L-type calcium channel, ß2-adrenoceptor, and CXCR4 (Cav1.2/ß2AR/CXCR4) was identified in healthy cardiac myocytes and was shown to dissociate as a consequence of heart failure. CXCR4 administered to the heart via gene transfer prevents pressure overload induced heart failure. The identification of CXCR4 participation in a Cav1.2-ß2AR regulatory complex provides further insight into the mechanism by which CXCR4 modulates calcium homeostasis and chronic pressure overload responses in the cardiac myocyte. Together these results suggest that AAV9.CXCR4 gene therapy is a potential therapeutic approach for congestive heart failure.


Assuntos
Quimiocina CXCL12/farmacologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Receptores CXCR4/metabolismo , Animais , Western Blotting , Calcineurina/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Ensaio de Imunoadsorção Enzimática , Insuficiência Cardíaca/genética , Hemodinâmica/efeitos dos fármacos , Imunoprecipitação , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptores Adrenérgicos beta 3/metabolismo , Receptores CXCR4/genética
15.
Acta Neuropathol ; 123(1): 133-51, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22083255

RESUMO

Alzheimer's disease (AD) is multifactorial and, to date, no single cause of the sporadic form of this disease, which accounts for over 99% of the cases, has been established. In AD brain, protein phosphatase-2A (PP2A) activity is known to be compromised due to the cleavage and translocation of its potent endogenous inhibitor, I2PP2A, from the neuronal nucleus to the cytoplasm. Here, we show that adeno-associated virus vector-induced expression of the N-terminal I2NTF and C-terminal I2CTF halves of I2PP2A , also called SET, in brain reproduced key features of AD in Wistar rats. The I2NTF-CTF rats showed a decrease in brain PP2A activity, abnormal hyperphosphorylation and aggregation of tau, a loss of neuronal plasticity and impairment in spatial reference and working memories. To test whether early pharmacologic intervention with a neurotrophic molecule could rescue neurodegeneration and behavioral deficits, 2.5-month-old I2NTF-CTF rats and control littermates were treated for 40 days with Peptide 6, an 11-mer peptide corresponding to an active region of the ciliary neurotrophic factor. Peripheral administration of Peptide 6 rescued neurodegeneration and cognitive deficit in I2NTF-CTF animals by increasing dentate gyrus neurogenesis and mRNA level of brain derived neurotrophic factor. Moreover, Peptide 6-treated I2NTF-CTF rats showed a significant increase in dendritic and synaptic density as reflected by increased expression of synapsin I, synaptophysin and MAP2, especially in the pyramidal neurons of CA1 and CA3 of the hippocampus.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Fator Neurotrófico Ciliar/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Hipocampo/metabolismo , Neurogênese/efeitos dos fármacos , Fragmentos de Peptídeos/uso terapêutico , Peptídeos/uso terapêutico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Masculino , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Wistar , Proteínas tau/metabolismo
16.
Proc Natl Acad Sci U S A ; 106(18): 7571-6, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19372372

RESUMO

A variety of viruses establish latency by integrating their genome into the host genome. The integration event generally occurs in a nonspecific manner, precluding the prediction of functional consequences from resulting disruptions of affected host genes. The nonpathogenic adeno-associated virus (AAV) is unique in its ability to stably integrate in a site-specific manner into the human MBS85 gene. To gain a better understanding of the integration mechanism and the consequences of MBS85 disruption, we analyzed the molecular structure of AAV integrants in various latently infected human cell lines. Our study led to the observation that AAV integration causes an extensive but partial duplication of the target gene. Intriguingly, the molecular organization of the integrant leaves the possibility that a functional copy of the disrupted target gene could potentially be preserved despite the resulting rearrangements. A latently infected, Mbs85-targeted mouse ES cell line was generated to study the functional consequences of the observed duplication-based integration mechanism. AAV-modified ES cell lines continued to self-renew, maintained their multilineage differentiation potential and contributed successfully to mouse development when injected into blastocysts. Thus, our study reveals a viral strategy for targeted genome addition with the apparent absence of functional consequences.


Assuntos
Dependovirus/genética , Marcação de Genes/métodos , Provírus/genética , Integração Viral , Latência Viral , Animais , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Humanos , Camundongos , Proteína Fosfatase 1/genética
17.
Hum Gene Ther ; 33(9-10): 550-559, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35293228

RESUMO

A disappointing number of new therapies for pulmonary hypertension (PH) have been successfully translated to the clinic. Adeno-associated viral (AAV) gene therapy has the potential to treat the underlying pathology of PH, but the challenge remains in efficient and safe delivery. The aims of this study were (1) to test the efficacy of endobronchial aerosolization delivery for AAV1-mediated sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) gene therapy in a PH pig model and (2) to identify the most efficient airway administration modality for in-lung gene therapy in PH. We hypothesized that delivery to the distal bronchi increases lung viral uptake and avoids virus loss in off-target compartments. In part 1 of the study, PH was induced in pigs by surgically banding the pulmonary veins. Two months postsurgery, 1 × 1013 viral genomes (vg) of AAV1.SERCA2a or saline was endobronchially aerosolized using a bronchoscope. Two months after aerosolization, high vg copies (vgc) were detected in the lungs, accompanied by functional and morphometrical amelioration of PH. In part 2 of the study, we directly compared the endobronchial aerosolization gene delivery to the intratracheal aerosolization in PH pigs. Endobronchial delivery demonstrated higher viral expression (6,719 ± 927 vs. 1,444 ± 402 vgc/100 ng DNA, p = 0.0017), suggesting this delivery modality is a promising method for clinical AAV gene therapy for PH.


Assuntos
Hipertensão Pulmonar , Animais , Dependovirus/genética , Dependovirus/metabolismo , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/terapia , Pulmão/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/uso terapêutico , Suínos
18.
Cardiovasc Res ; 118(15): 3140-3150, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-35191471

RESUMO

AIMS: A mutation in the phospholamban (PLN) gene, leading to deletion of Arg14 (R14del), has been associated with malignant arrhythmias and ventricular dilation. Identifying pre-symptomatic carriers with vulnerable myocardium is crucial because arrhythmia can result in sudden cardiac death, especially in young adults with PLN-R14del mutation. This study aimed at assessing the efficiency and efficacy of in vivo genome editing, using CRISPR/Cas9 and a cardiotropic adeno-associated virus-9 (AAV9), in improving cardiac function in young adult mice expressing the human PLN-R14del. METHODS AND RESULTS: Humanized mice were generated expressing human wild-type (hPLN-WT) or mutant (hPLN-R14del) PLN in the heterozygous state, mimicking human carriers. Cardiac magnetic resonance imaging at 12 weeks of age showed bi-ventricular dilation and increased stroke volume in mutant vs. WT mice, with no deficit in ejection fraction or cardiac output. Challenge of ex vivo hearts with isoproterenol and rapid pacing unmasked higher propensity for sustained ventricular tachycardia (VT) in hPLN-R14del relative to hPLN-WT. Specifically, the VT threshold was significantly reduced (20.3 ± 1.2 Hz in hPLN-R14del vs. 25.7 ± 1.3 Hz in WT, P < 0.01) reflecting higher arrhythmia burden. To inactivate the R14del allele, mice were tail-vein-injected with AAV9.CRISPR/Cas9/gRNA or AAV9 empty capsid (controls). CRISPR-Cas9 efficiency was evaluated by droplet digital polymerase chain reaction and NGS-based amplicon sequencing. In vivo gene editing significantly reduced end-diastolic and stroke volumes in hPLN-R14del CRISPR-treated mice compared to controls. Susceptibility to VT was also reduced, as the VT threshold was significantly increased relative to controls (30.9 ± 2.3 Hz vs. 21.3 ± 1.5 Hz; P < 0.01). CONCLUSIONS: This study is the first to show that disruption of hPLN-R14del allele by AAV9-CRISPR/Cas9 improves cardiac function and reduces VT susceptibility in humanized PLN-R14del mice, offering preclinical evidence for translatable approaches to therapeutically suppress the arrhythmogenic phenotype in human patients with PLN-R14del disease.


Assuntos
Cardiomiopatias , Edição de Genes , Humanos , Camundongos , Animais , Cardiomiopatias/genética , Cardiomiopatias/terapia
19.
J Mol Cell Cardiol ; 51(2): 144-55, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21549710

RESUMO

We have previously reported that resistin induces hypertrophy and impairs contractility in isolated rat cardiomyocytes. To examine the long-term cardiovascular effects of resistin, we induced in vivo overexpression of resistin using adeno-associated virus serotype 9 injected by tail vein in rats and compared to control animals. Ten weeks after viral injection, overexpression of resistin was associated with increased ratio of left ventricular (LV) weight/body weight, increased end-systolic LV volume and significant decrease in LV contractility, measured by the end-systolic pressure volume relationship slope in LV pressure volume loops, compared to controls. At the molecular level, mRNA expression of ANF and ß-MHC, and protein levels of phospholamban were increased in the resistin group without a change in the level of SERCA2a protein expression. Increased fibrosis by histology, associated with increased mRNA levels of collagen, fibronectin and connective tissue growth factor were observed in the resistin-overexpressing hearts. Resistin overexpression was also associated with increased apoptosis in vivo, along with an apoptotic molecular phenotype in vivo and in vitro. Resistin-overexpressing LV tissue had higher levels of TNF-α receptor 1 and iNOS, and reduced levels of eNOS. Cardiomyocytes overexpressing resistin in vitro produced larger amounts of TNFα in the medium, had increased phosphorylation of IκBα and displayed increased intracellular reactive oxygen species (ROS) content with increased expression and activity of ROS-producing NADPH oxidases compared to controls. Long-term resistin overexpression is associated with a complex phenotype of oxidative stress, inflammation, fibrosis, apoptosis and myocardial remodeling and dysfunction in rats. This phenotype recapitulates key features of diabetic cardiomyopathy. This article is part of Special Issue Item Group entitled "Possible Editorial".


Assuntos
Expressão Gênica/genética , Coração/fisiopatologia , Miocárdio/metabolismo , Resistina/genética , Resistina/metabolismo , Remodelação Ventricular/genética , Animais , Apoptose/genética , Biomarcadores/metabolismo , Glicemia/genética , Células Cultivadas , Fibrose/genética , Regulação da Expressão Gênica , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Hemodinâmica/genética , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Mediadores da Inflamação/metabolismo , Masculino , Miocárdio/enzimologia , Miocárdio/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo/genética , Ratos , Ratos Sprague-Dawley
20.
FASEB J ; 24(11): 4420-32, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20651003

RESUMO

Development of rational therapeutic treatments of Alzheimer disease (AD) requires the elucidation of the etiopathogenic mechanisms of neurofibrillary degeneration and ß-amyloidosis, the two hallmarks of this disease. Here we show, employing an adeno-associated virus serotype 1 (AAV1)-induced expression of the C-terminal fragment (I(2CTF)) of I(2)(PP2A), also called SET, in rat brain, decrease in protein phosphatase 2A (PP2A) activity, abnormal hyperphosphorylation of tau, and neurodegeneration; littermates treated identically but with vector only, i.e., AAV1-enhanced green fluorescent protein (GFP), served as a control. Furthermore, there was an increase in the level of activated glycogen synthase kinase-3ß and enhanced expression of intraneuronal Aß in AAV1-I(2CTF) animals. Morris water maze behavioral test revealed that infection with AAV1-I(2CTF) induced spatial reference memory and memory consolidation deficits and a decrease in the brain level of pSer133-CREB. These findings suggest a novel etiopathogenic mechanism of AD, which is initiated by the cleavage of I(2)(PP2A), producing I(2CTF), and describe a novel disease-relevant nontransgenic animal model of AD.


Assuntos
Doença de Alzheimer/patologia , Proteínas de Transporte/metabolismo , Transtornos Cognitivos/patologia , Proteínas Nucleares/metabolismo , Adenoviridae/genética , Animais , Proteínas de Transporte/genética , Linhagem Celular , Dendritos/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Neurônios/patologia , Proteínas Nucleares/genética , Fosforilação , Proteína Fosfatase 2/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes/genética , Sinapses/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA