Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Am J Hum Genet ; 106(6): 779-792, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32413283

RESUMO

The evolutionarily conserved hedgehog (Hh) pathway is essential for organogenesis and plays critical roles in postnatal tissue maintenance and renewal. A unique feature of the vertebrate Hh pathway is that signal transduction requires the primary cilium (PC) where major pathway components are dynamically enriched. These factors include smoothened (SMO) and patched, which constitute the core reception system for sonic hedgehog (SHH) as well as GLI transcription factors, the key mediators of the pathway. Here, we report bi-allelic loss-of-function variations in SMO in seven individuals from five independent families; these variations cause a wide phenotypic spectrum of developmental anomalies affecting the brain (hypothalamic hamartoma and microcephaly), heart (atrioventricular septal defect), skeleton (postaxial polydactyly, narrow chest, and shortening of long bones), and enteric nervous system (aganglionosis). Cells derived from affected individuals showed normal ciliogenesis but severely altered Hh-signal transduction as a result of either altered PC trafficking or abnormal activation of the pathway downstream of SMO. In addition, Hh-independent GLI2 accumulation at the PC tip in cells from the affected individuals suggests a potential function of SMO in regulating basal ciliary trafficking of GLI2 when the pathway is off. Thus, loss of SMO function results in abnormal PC dynamics of key components of the Hh signaling pathway and leads to a large continuum of malformations in humans.


Assuntos
Alelos , Deficiências do Desenvolvimento/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Receptor Smoothened/genética , Sequência de Bases , Criança , Pré-Escolar , Cílios/fisiologia , Feminino , Humanos , Lactente , Masculino , Modelos Moleculares , Neoplasias/genética , Proteínas do Tecido Nervoso , Proteínas Nucleares , Linhagem , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
2.
Am J Hum Genet ; 99(4): 886-893, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27616478

RESUMO

Disruption of the establishment of left-right (L-R) asymmetry leads to situs anomalies ranging from situs inversus totalis (SIT) to situs ambiguus (heterotaxy). The genetic causes of laterality defects in humans are highly heterogeneous. Via whole-exome sequencing (WES), we identified homozygous mutations in PKD1L1 from three affected individuals in two unrelated families. PKD1L1 encodes a polycystin-1-like protein and its loss of function is known to cause laterality defects in mouse and medaka fish models. Family 1 had one fetus and one deceased child with heterotaxy and complex congenital heart malformations. WES identified a homozygous splicing mutation, c.6473+2_6473+3delTG, which disrupts the invariant splice donor site in intron 42, in both affected individuals. In the second family, a homozygous c.5072G>C (p.Cys1691Ser) missense mutation was detected in an individual with SIT and congenital heart disease. The p.Cys1691Ser substitution affects a highly conserved cysteine residue and is predicted by molecular modeling to disrupt a disulfide bridge essential for the proper folding of the G protein-coupled receptor proteolytic site (GPS) motif. Damaging effects associated with substitutions of this conserved cysteine residue in the GPS motif have also been reported in other genes, namely GPR56, BAI3, and PKD1 in human and lat-1 in C. elegans, further supporting the likely pathogenicity of p.Cys1691Ser in PKD1L1. The identification of bi-allelic PKD1L1 mutations recapitulates previous findings regarding phenotypic consequences of loss of function of the orthologous genes in mice and medaka fish and further expands our understanding of genetic contributions to laterality defects in humans.


Assuntos
Alelos , Lateralidade Funcional/genética , Proteínas de Membrana/genética , Mutação , Situs Inversus/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Cisteína/genética , Exoma/genética , Feminino , Doenças Fetais/genética , Cardiopatias Congênitas/genética , Síndrome de Heterotaxia , Homozigoto , Humanos , Recém-Nascido , Íntrons/genética , Masculino , Proteínas de Membrana/química , Camundongos , Pessoa de Meia-Idade , Modelos Moleculares , Mutação de Sentido Incorreto , Oryzias/genética , Linhagem , Splicing de RNA/genética
3.
Neurology ; 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835557

RESUMO

BACKGROUND AND OBJECTIVES: Spinal muscular atrophy (SMA) was added to the Recommended Uniform Screening Panel (RUSP) in July 2018, largely on the basis of the availability and efficacy of newly-approved disease modifying therapies. New York State (NYS) started universal newborn screening for SMA in October 2018. The authors report the findings from the first 3 years of screening. METHODS: Statewide neonatal screening was conducted using DNA extracted from dried blood spots using a real-time quantitative polymerase chain reaction (qPCR) assay. Retrospective follow-up data were collected from 9 referral centers across the state on 34 infants. RESULTS: In the first three years since statewide implementation, nearly 650,000 infants have been screened for SMA. 34 babies screened positive and were referred to a neuromuscular specialty care center. The incidence remains lower than previously predicted. The majority (94%), including all infants with 2-3 copies of SMN2, have received treatment. Among treated infants, the overwhelming majority (97%; 29/30) have received gene replacement. All infants in this cohort with 3 copies of SMN2 are clinically asymptomatic post-treatment based on early clinical follow-up data. Infants with 2 copies of SMN2 are more variable in their outcomes. Electrodiagnostic outcomes data from a subgroup of patients (n=11) for whom pre- and post-treatment data demonstrated either improvement or no change in CMAP amplitude at last clinical follow-up compared to pre-treatment baseline. Most infants were treated before 6 weeks of age (median = 34.5 DOL; range 11-180). Delays and barriers to treatment identified by treating clinicians followed two broad themes: medical and non-medical. Medical delays most commonly reported were presence of AAV9 antibodies and elevated troponin I levels. Non-medical barriers included delays in obtaining insurance as well as insurance policies regarding specific treatment modalities. DISCUSSION: The findings from the NYS cohort of newborn screen-identified infants are consistent with other reports of improved outcomes from early diagnosis and treatment. Additional biomarkers of motor neuron health including electromyography can potentially be helpful in detecting pre-clinical decline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA