Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(2): 363-366, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194569

RESUMO

Quantum optical coherence tomography (Q-OCT) presents many advantages over its classical counterpart, optical coherence tomography (OCT), provides an increased axial resolution, and is immune to even orders of dispersion. The core of Q-OCT is the quantum interference of negatively correlated entangled photon pairs which, in the Fourier domain, are observed by means of a joint spectrum measurement. In this work, we explore the use of a spectral approach in a novel configuration where classical light pulses are employed instead of entangled photons. The intensity of these light pulses is reduced to a single photon level. We report theoretical analysis along with its experimental validation to show that although such a classical light is much easier to launch into an experimental system, it offers limited benefits compared to Q-OCT based on the entangled light. We analyze the differences in the characteristics of the joint spectrum obtained with entangled photons and with classical optical pulses and point out to the differences' source: the lack of the advantage-bringing term in the signal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA