Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(46): e202400873, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38869212

RESUMO

A series of pyridyl-substituted nitronyl nitroxides was synthesized and structurally characterized. A comprehensive magnetochemical and quantum chemical study of extended raw of the nitroxides with different substituents R in the pyridine fragment was performed. It was shown, that temperature-dependent magnetic properties are determined by the short contacts between nitroxide groups of adjacent molecules as well as between nitroxide group and methyl substituents in the pseudo axial positions of imidazoline fragments. Quantum chemistry allows to select the appropriate model of exchange cluster for analysis of experimental magnetic data and evaluation of the exchange interaction parameters. For NN-PyCl the "order-disorder" transition was detected by means of low temperature XRD. The difference in the experimental and calculated exchange interaction energies may serve as an indicator of temperature-induced structural rearrangements. For instance, for methyl substituted nitronyl nitroxide NN-PyMe structural transformations and significant changes in exchange interaction energies were observed.

2.
Nitric Oxide ; 143: 9-15, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096947

RESUMO

This study explores the antiarrhythmic and hypotensive potential of pyridyl-substituted nitronyl nitroxides derivatives, uncovering the crucial role of a single carbon moiety of the pyridine cycle alongside radical and charged oxygen centers of the imidazoline fragment. Notably, the introduction of fluorine atoms diminished the antiarrhythmic effect, while the most potent derivatives featured the nitronyl nitroxide pattern positioned at the third site of the pyridine cycle. Gender-dependent responses were observed in lead compounds LCF3 and LMe, with LMe inducing temporary bradycardia and hypotension specifically in female rats, and LCF3 causing significant blood pressure reduction followed by rebound in females compared to milder effects in males. Mechanistic insights point towards ß1 adrenoceptor blockade as an underlying mechanism, supported by experiments on isolated rat atria. This research underscores the interplay between structure, cardiovascular effects and gender-specific responses, offering insights for therapeutic strategies for treating free radical-associated cardiovascular disorders.


Assuntos
Anti-Hipertensivos , Óxidos de Nitrogênio , Masculino , Ratos , Feminino , Animais , Óxidos de Nitrogênio/química , Radicais Livres , Piridinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA