Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446550

RESUMO

The root growth angle defines how roots grow toward the gravity vector and is among the most important determinants of root system architecture. It controls water uptake capacity, nutrient use efficiency, stress resilience, and, as a consequence, yield of crop plants. We demonstrated that the egt2 (enhanced gravitropism 2) mutant of barley exhibits steeper root growth of seminal and lateral roots and an auxin-independent higher responsiveness to gravity compared to wild-type plants. We cloned the EGT2 gene by a combination of bulked-segregant analysis and whole genome sequencing. Subsequent validation experiments by an independent CRISPR/Cas9 mutant allele demonstrated that egt2 encodes a STERILE ALPHA MOTIF domain-containing protein. In situ hybridization experiments illustrated that EGT2 is expressed from the root cap to the elongation zone. We demonstrated the evolutionary conserved role of EGT2 in root growth angle control between barley and wheat by knocking out the EGT2 orthologs in the A and B genomes of tetraploid durum wheat. By combining laser capture microdissection with RNA sequencing, we observed that seven expansin genes were transcriptionally down-regulated in the elongation zone. This is consistent with a role of EGT2 in this region of the root where the effect of gravity sensing is executed by differential cell elongation. Our findings suggest that EGT2 is an evolutionary conserved regulator of root growth angle in barley and wheat that could be a valuable target for root-based crop improvement strategies in cereals.


Assuntos
Gravitropismo , Hordeum/fisiologia , Proteínas de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Motivo Estéril alfa , Triticum/fisiologia , Parede Celular/metabolismo , Sequência Conservada , Evolução Molecular , Técnicas de Inativação de Genes , Genes de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Triticum/genética , Triticum/crescimento & desenvolvimento
2.
J Exp Bot ; 73(7): 2050-2060, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34918078

RESUMO

Seedling establishment is the first stage of crop productivity, and root phenotypes at seed emergence are critical to a successful start of shoot growth as well as for water and nutrient uptake. In this study, we investigate seedling establishment in winter wheat utilizing a newly developed workflow based on magnetic resonance imaging (MRI). Using the eight parents of the MAGIC (multi-parent advanced generation inter-cross) population we analysed the 4D root architecture of 288 individual seedlings grown in natural soils with plant neighbors over 3 d of development. Time of root and shoot emergence, total length, angle, and depth of the axile roots varied significantly among these genotypes. The temporal data resolved rates of elongation of primary roots and first and second seminal root pairs. Genotypes with slowly elongating primary roots had rapidly elongating first and second seminal root pairs and vice versa, resulting in variation in root system architecture mediated not only by root angle but also by initiation and relative elongation of axile roots. We demonstrated that our novel MRI workflow with a unique planting design and automated measurements allowed medium throughput phenotyping of wheat roots in 4D and could give new insights into regulation of root system architecture.


Assuntos
Solo , Triticum , Imageamento por Ressonância Magnética , Raízes de Plantas , Plântula
3.
Nature ; 468(7323): 553-6, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20981010

RESUMO

Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.


Assuntos
Biodiversidade , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Animais , Densidade Demográfica
4.
BMC Ecol ; 16(1): 37, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27534619

RESUMO

BACKGROUND: Seed dressing with pesticides is widely used to protect crop seeds from pest insects and fungal diseases. While there is mounting evidence that especially neonicotinoid seed dressings detrimentally affect insect pollinators, surprisingly little is known on potential side effects on soil biota. We hypothesized that soil organisms would be particularly susceptible to pesticide seed dressings as they get in direct contact with these chemicals. Using microcosms with field soil we investigated, whether seeds treated either with neonicotinoid insecticides or fungicides influence the activity and interaction of earthworms, collembola, protozoa and microorganisms. The full-factorial design consisted of the factor Seed dressing (control vs. insecticide vs. fungicide), Earthworm (no earthworms vs. addition Lumbricus terrestris L.) and collembola (no collembola vs. addition Sinella curviseta Brook). We used commercially available wheat seed material (Triticum aesticum L. cf. Lukullus) at a recommended seeding density of 367 m(-2). RESULTS: Seed dressings (particularly fungicides) increased collembola surface activity, increased the number of protozoa and reduced plant decomposition rate but did not affect earthworm activity. Seed dressings had no influence on wheat growth. Earthworms interactively affected the influence of seed dressings on collembola activity, whereas collembola increased earthworm surface activity but reduced soil basal respiration. Earthworms also decreased wheat growth, reduced soil basal respiration and microbial biomass but increased soil water content and electrical conductivity. CONCLUSIONS: The reported non-target effects of seed dressings and their interactions with soil organisms are remarkable because they were observed after a one-time application of only 18 pesticide treated seeds per experimental pot. Because of the increasing use of seed dressing in agriculture and the fundamental role of soil organisms in agroecosystems these ecological interactions should receive more attention.


Assuntos
Eucariotos/efeitos dos fármacos , Praguicidas/farmacologia , Sementes/química , Microbiologia do Solo , Solo/parasitologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Ecossistema , Eucariotos/genética , Eucariotos/isolamento & purificação , Eucariotos/fisiologia , Sementes/crescimento & desenvolvimento , Triticum/química , Triticum/crescimento & desenvolvimento
5.
Environ Microbiol ; 17(11): 4538-46, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26079718

RESUMO

Soils host the most complex communities on Earth, including the most diverse and abundant eukaryotes, i.e. heterotrophic protists. Protists are generally considered as bacterivores, but evidence for negative interactions with nematodes both from laboratory and field studies exist. However, direct impacts of protists on nematodes remain unknown. We isolated the soil-borne testate amoeba Cryptodifflugia operculata and found a highly specialized and effective pack-hunting strategy to prey on bacterivorous nematodes. Enhanced reproduction in presence of prey nematodes suggests a beneficial predatory life history of these omnivorous soil amoebae. Cryptodifflugia operculata appears to selectively impact the nematode community composition as reductions of nematode numbers were species specific. Furthermore, we investigated 12 soil metatranscriptomes from five distinct locations throughout Europe for 18S ribosomal RNA transcripts of C. operculata. The presence of C. operculata transcripts in all samples, representing up to 4% of the active protist community, indicates a potential ecological importance of nematophagy performed by C. operculata in soil food webs. The unique pack-hunting strategy on nematodes that was previously unknown from protists, together with molecular evidence that these pack hunters are likely to be abundant and widespread in soils, imply a considerable importance of the hitherto neglected trophic link 'nematophagous protists' in soil food webs.


Assuntos
Amoeba/patogenicidade , Interações Hospedeiro-Parasita/fisiologia , Nematoides/parasitologia , Comportamento Predatório/fisiologia , Solo/parasitologia , Amoeba/genética , Amoeba/isolamento & purificação , Animais , Europa (Continente) , Cadeia Alimentar , RNA Ribossômico 18S/genética , Especificidade da Espécie , Transcriptoma/genética
6.
Phys Med Biol ; 69(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38271724

RESUMO

Objective.ThephenoPET system is a plant dedicated positron emission tomography (PET) scanner consisting of fully digital photo multipliers with lutetium-yttrium oxyorthosilicate crystals and located inside a custom climate chamber. Here, we present the setup ofphenoPET, its data processing and image reconstruction together with its performance.Approach.The performance characterization follows the national electrical manufacturers association (NEMA) standard for small animal PET systems with a number of adoptions due to the vertical oriented bore of a PET for plant sciences. In addition temperature stability and spatial resolution with a hot rod phantom are addressed.Main results.The spatial resolution for a22Na point source at a radial distance of 5 mm to the center of the field-of-view (FOV) is 1.45 mm, 0.82 mm and 1.88 mm with filtered back projection in radial, tangential and axial direction, respectively. A hot rod phantom with18F gives a spatial resolution of up to 1.6 mm. The peak noise-equivalent count rates are 550 kcps @ 35.08 MBq, 308 kcps @ 33 MBq and 45 kcps @ 40.60 MBq for the mouse, rat and monkey size scatter phantoms, respectively. The scatter fractions for these phantoms are 12.63%, 22.64% and 55.90%. We observe a peak sensitivity of up to 3.6% and a total sensitivity of up toSA,tot= 2.17%. For the NEMA image quality phantom we observe a uniformity of %STD= 4.22% with ordinary Poisson maximum likelihood expectation-maximization with 52 iterations. Here, recovery coefficients of 0.12, 0.64, 0.89, 0.93 and 0.91 for 1 mm, 2 mm, 3 mm, 4 mm and 5 mm rods are obtained and spill-over ratios of 0.08 and 0.14 for the water-filled and air-filled inserts, respectively.Significance.ThephenoPET and its laboratory are now in routine operation for the administration of [11C]CO2and non-invasive measurement of transport and allocation of11C-labelled photoassimilates in plants.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons , Camundongos , Ratos , Animais , Tomografia por Emissão de Pósitrons/métodos , Imagens de Fantasmas
7.
Nat Genet ; 56(6): 1245-1256, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778242

RESUMO

The maize root system has been reshaped by indirect selection during global adaptation to new agricultural environments. In this study, we characterized the root systems of more than 9,000 global maize accessions and its wild relatives, defining the geographical signature and genomic basis of variation in seminal root number. We demonstrate that seminal root number has increased during maize domestication followed by a decrease in response to limited water availability in locally adapted varieties. By combining environmental and phenotypic association analyses with linkage mapping, we identified genes linking environmental variation and seminal root number. Functional characterization of the transcription factor ZmHb77 and in silico root modeling provides evidence that reshaping root system architecture by reducing the number of seminal roots and promoting lateral root density is beneficial for the resilience of maize seedlings to drought.


Assuntos
Adaptação Fisiológica , Domesticação , Secas , Raízes de Plantas , Plântula , Água , Zea mays , Zea mays/genética , Zea mays/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Adaptação Fisiológica/genética , Plântula/genética , Água/metabolismo , Mapeamento Cromossômico , Fenótipo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
New Phytol ; 199(1): 203-211, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23534902

RESUMO

Dead organic matter (OM) is a major source of nitrogen (N) for plants. The majority of plants support N uptake by symbiosis with arbuscular mycorrhizal (AM) fungi. Mineralization of N is regulated by microfauna, in particular, protozoa grazing on bacteria. We hypothesized that AM fungi and protozoa interactively facilitate plant N nutrition from OM. In soil systems consisting of an OM patch and a root compartment, plant N uptake and consequences for plant carbon (C) allocation were investigated using stable isotopes. Protozoa mobilized N by consuming bacteria, and the mobilized N was translocated via AM fungi to the host plant. The presence of protozoa in both the OM and root compartment stimulated photosynthesis and the translocation of C from the host plant via AM fungi into the OM patch. This stimulated microbial activity in the OM patch, plant N uptake from OM and doubled plant growth. The results indicate that protozoa increase plant growth by both mobilization of N from OM and by protozoa-root interactions, resulting in increased C allocation to roots and into the rhizosphere, thereby increasing plant nutrient exploitation. Hence, mycorrhizal plants need to interact with protozoa to fully exploit N resources from OM.


Assuntos
Micorrizas/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , Plantago/crescimento & desenvolvimento , Plantago/microbiologia , Microbiologia do Solo , Simbiose , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Hifas/metabolismo , Minerais/metabolismo , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo , Fotossíntese , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantago/metabolismo
9.
Front Plant Sci ; 14: 1124899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313253

RESUMO

Seed dormancy is a crucial developmental transition that affects the adaption and survival of plants. Arabidopsis DELAY OF GERMINATION 1 (DOG1) is known as a master regulator of seed dormancy. However, although several upstream factors of DOG1 have been reported, the exact regulation of DOG1 is not fully understood. Histone acetylation is an important regulatory layer, controlled by histone acetyltransferases and histone deacetylases. Histone acetylation strongly correlates with transcriptionally active chromatin, whereas heterochromatin is generally characterized by hypoacetylated histones. Here we describe that loss of function of two plant-specific histone deacetylases, HD2A and HD2B, resulted in enhanced seed dormancy in Arabidopsis. Interestingly, the silencing of HD2A and HD2B caused hyperacetylation of the DOG1 locus and promoted the expression of DOG1 during seed maturation and imbibition. Knockout of DOG1 could rescue the seed dormancy and partly rescue the disturbed development phenotype of hd2ahd2b. Transcriptomic analysis of the hd2ahd2b line shows that many genes involved in seed development were impaired. Moreover, we demonstrated that HSI2 and HSL1 interact with HD2A and HD2B. In sum, these results suggest that HSI2 and HSL1 might recruit HD2A and HD2B to DOG1 to negatively regulate DOG1 expression and to reduce seed dormancy, consequently, affecting seed development during seed maturation and promoting seed germination during imbibition.

10.
Plants (Basel) ; 11(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35270102

RESUMO

Legumes associate with root colonizing rhizobia that provide fixed nitrogen to its plant host in exchange for recently fixed carbon. There is a lack of understanding of how individual plants modulate carbon allocation to a nodulated root system as a dynamic response to abiotic stimuli. One reason is that most approaches are based on destructive sampling, making quantification of localised carbon allocation dynamics in the root system difficult. We established an experimental workflow for routinely using non-invasive Positron Emission Tomography (PET) to follow the allocation of leaf-supplied 11C tracer towards individual nodules in a three-dimensional (3D) root system of pea (Pisum sativum). Nitrate was used for triggering a reduction of biological nitrogen fixation (BNF), which was expected to rapidly affect carbon allocation dynamics in the root-nodule system. The nitrate treatment led to a decrease in 11C tracer allocation to nodules by 40% to 47% in 5 treated plants while the variation in control plants was less than 11%. The established experimental pipeline enabled for the first time that several plants could consistently be labelled and measured using 11C tracers in a PET approach to quantify C-allocation to individual nodules following a BNF reduction. Our study demonstrates the strength of using 11C tracers in a PET approach for non-invasive quantification of dynamic carbon allocation in several growing plants over several days. A major advantage of the approach is the possibility to investigate carbon dynamics in small regions of interest in a 3D system such as nodules in comparison to whole plant development.

11.
Front Microbiol ; 12: 625697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777265

RESUMO

In this review, we introduce microbially-mediated soil processes, players, their functional traits, and their links to processes at biogeochemical interfaces [e.g., rhizosphere, detritusphere, (bio)-pores, and aggregate surfaces]. A conceptual view emphasizes the central role of the rhizosphere in interactions with other biogeochemical interfaces, considering biotic and abiotic dynamic drivers. We discuss the applicability of three groups of traits based on microbial physiology, activity state, and genomic functional traits to reflect microbial growth in soil. The sensitivity and credibility of modern molecular approaches to estimate microbial-specific growth rates require further development. A link between functional traits determined by physiological (e.g., respiration, biomarkers) and genomic (e.g., genome size, number of ribosomal gene copies per genome, expression of catabolic versus biosynthetic genes) approaches is strongly affected by environmental conditions such as carbon, nutrient availability, and ecosystem type. Therefore, we address the role of soil physico-chemical conditions and trophic interactions as drivers of microbially-mediated soil processes at relevant scales for process localization. The strengths and weaknesses of current approaches (destructive, non-destructive, and predictive) for assessing process localization and the corresponding estimates of process rates are linked to the challenges for modeling microbially-mediated processes in heterogeneous soil microhabitats. Finally, we introduce a conceptual self-regulatory mechanism based on the flexible structure of active microbial communities. Microbial taxa best suited to each successional stage of substrate decomposition become dominant and alter the community structure. The rates of decomposition of organic compounds, therefore, are dependent on the functional traits of dominant taxa and microbial strategies, which are selected and driven by the local environment.

12.
Front Microbiol ; 12: 619499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815308

RESUMO

Numerous studies have shown that plants selectively recruit microbes from the soil to establish a complex, yet stable and quite predictable microbial community on their roots - their "microbiome." Microbiome assembly is considered as a key process in the self-organization of root systems. A fundamental question for understanding plant-microbe relationships is where a predictable microbiome is formed along the root axis and through which microbial dynamics the stable formation of a microbiome is challenged. Using maize as a model species for which numerous data on dynamic root traits are available, this mini-review aims to give an integrative overview on the dynamic nature of root growth and its consequences for microbiome assembly based on theoretical considerations from microbial community ecology.

13.
Front Plant Sci ; 9: 1095, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131816

RESUMO

Improving fertility of marginal soils for the sustainable production of biomass is a strategy for reducing land use conflicts between food and energy crops. Digestates can be used as fertilizer and for soil amelioration. In order to promote plant growth and reduce potential adverse effects on roots because of broadcast digestate fertilization, we propose to apply local digestate depots placed into the rhizosphere. We grew Sida hermaphrodita in large mesocosms outdoors for three growing seasons and in rhizotrons in the greenhouse for 3 months both filled with marginal substrate, including multiple sampling dates. We compared digestate broadcast application with digestate depot fertilization and a mineral fertilizer control. We show that depot fertilization promotes a deep reaching root system of S. hermaphrodita seedlings followed by the formation of a dense root cluster around the depot-fertilized zone, resulting in a fivefold increased biomass yield. Temporal adverse effects on root growth were linked to high initial concentrations of ammonium and nitrite in the rhizosphere in either fertilizer application, followed by a high biomass increase after its microbial conversion to nitrate. We conclude that digestate depot fertilization can contribute to an improved cultivation of perennial energy-crops on marginal soils.

14.
Plant Methods ; 13: 102, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29177002

RESUMO

BACKGROUND: Root systems are highly plastic and adapt according to their soil environment. Studying the particular influence of soils on root development necessitates the adaptation and evaluation of imaging methods for multiple substrates. Non-invasive 3D root images in soil can be obtained using magnetic resonance imaging (MRI). Not all substrates, however, are suitable for MRI. Using barley as a model plant we investigated the achievable image quality and the suitability for root phenotyping of six commercially available natural soil substrates of commonly occurring soil textures. The results are compared with two artificially composed substrates previously documented for MRI root imaging. RESULTS: In five out of the eight tested substrates, barley lateral roots with diameters below 300 µm could still be resolved. In two other soils, only the thicker barley seminal roots were detectable. For these two substrates the minimal detectable root diameter was between 400 and 500 µm. Only one soil did not allow imaging of the roots with MRI. In the artificially composed substrates, soil moisture above 70% of the maximal water holding capacity (WHCmax) impeded root imaging. For the natural soil substrates, soil moisture had no effect on MRI root image quality in the investigated range of 50-80% WHCmax. CONCLUSIONS: Almost all tested natural soil substrates allowed for root imaging using MRI. Half of these substrates resulted in root images comparable to our current lab standard substrate, allowing root detection down to a diameter of 300 µm. These soils were used as supplied by the vendor and, in particular, removal of ferromagnetic particles was not necessary. With the characterization of different soils, investigations such as trait stability across substrates are now possible using noninvasive MRI.

15.
Front Plant Sci ; 8: 215, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28270821

RESUMO

Seed dressing, i.e., the treatment of crop seeds with insecticides and/or fungicides, aiming to protect seeds from pests and diseases, is widely used in conventional agriculture. During the growing season, those crop fields often receive additional broadband herbicide applications. However, despite this broad utilization, very little is known on potential side effects or interactions between these different pesticide classes on soil organisms. In a greenhouse pot experiment, we studied single and interactive effects of seed dressing of winter wheat (Triticum aestivum L. var. Capo) with neonicotinoid insecticides and/or strobilurin and triazolinthione fungicides and an additional one-time application of a glyphosate-based herbicide on the activity of earthworms, soil microorganisms, litter decomposition, and crop growth. To further address food-web interactions, earthworms were introduced to half of the experimental units as an additional experimental factor. Seed dressings significantly reduced the surface activity of earthworms with no difference whether insecticides or fungicides were used. Moreover, seed dressing effects on earthworm activity were intensified by herbicides (significant herbicide × seed dressing interaction). Neither seed dressings nor herbicide application affected litter decomposition, soil basal respiration, microbial biomass, or specific respiration. Seed dressing did also not affect wheat growth. We conclude that interactive effects on soil biota and processes of different pesticide classes should receive more attention in ecotoxicological research.

16.
Front Microbiol ; 7: 1524, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725815

RESUMO

The flow of plant-derived carbon in soil is a key component of global carbon cycling. Conceptual models of trophic carbon fluxes in soil have assumed separate bacterial and fungal energy channels in the detritusphere, controlled by both substrate complexity and recalcitrance. However, detailed understanding of the key populations involved and niche-partitioning between them is limited. Here, a microcosm experiment was performed to trace the flow of detritusphere C from substrate analogs (glucose, cellulose) and plant biomass amendments (maize leaves, roots) in an agricultural soil. Carbon flow was traced by rRNA stable isotope probing and amplicon sequencing across three microbial kingdoms. Distinct lineages within the Actinobacteria, Bacteroidetes, Gammaproteobacteria, Basidiomycota, Ascomycota as well as Peronosporomycetes were identified as important primary substrate consumers. A dynamic succession of primary consumers was observed especially in the cellulose treatments, but also in plant amendments over time. While intra-kingdom niche partitioning was clearly observed, distinct bacterial and fungal energy channels were not apparent. Furthermore, while the diversity of primary substrate consumers did not notably increase with substrate complexity, consumer succession and secondary trophic links to bacterivorous and fungivorous microbes resulted in increased food web complexity in the more recalcitrant substrates. This suggests that rather than substrate-defined energy channels, consumer succession as well as intra- and inter-kingdom cross-feeding should be considered as mechanisms supporting food web complexity in the detritusphere.

17.
FEMS Microbiol Ecol ; 85(2): 241-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23521364

RESUMO

Plant residues provide a major source of nitrogen (N) for plant growth. Litter N mineralization varies with litter carbon-to-nitrogen (C-to-N) ratio and presence of bacterial-feeding fauna. We assessed the effect of amoebae, major bacterial feeders in soil, on mineralization of litter of low (high quality) and high C-to-N ratio (low quality) and evaluated consequences for plant growth. We used stable isotopes to determine plant N uptake from litter and plant C partitioning. Stable isotope probing of phospholipid fatty acids was used to follow incorporation of plant C into microorganisms. Amoebae increased plant N uptake independent of litter quality and thereby the biomass of shoots and roots by 33% and 66%, respectively. Plant allocation of total (13)C to roots in low (42%) exceeded that of high-quality litter treatments (26%). Amoebae increased plant allocation of (13)C to roots by 37%. Microbial community structure and incorporation of (13)C into PLFAs varied significantly with litter quality and in the low-quality litter treatment also with the presence of amoebae. Overall, the results suggest that in particular at low nutrient conditions, root-derived C fosters the mobilization of bacterial N by protozoa, thereby increasing plant growth when microorganisms and plants compete for nutrients.


Assuntos
Ecossistema , Desenvolvimento Vegetal , Microbiologia do Solo , Acanthamoeba/fisiologia , Bactérias/metabolismo , Biomassa , Carbono/análise , Ácidos Graxos/análise , Nitrogênio/análise , Fosfolipídeos/química , Raízes de Plantas/metabolismo , Plantago/química , Plantago/crescimento & desenvolvimento , Plantago/metabolismo , Plantas/química , Plantas/metabolismo , Rizosfera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA