Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
medRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562678

RESUMO

Suicide prevention requires risk identification, appropriate intervention, and follow-up. Traditional risk identification relies on patient self-reporting, support network reporting, or face-to-face screening with validated instruments or history and physical exam. In the last decade, statistical risk models have been studied and more recently deployed to augment clinical judgment. Models have generally been found to be low precision or problematic at scale due to low incidence. Few have been tested in clinical practice, and none have been tested in clinical trials to our knowledge. Methods: We report the results of a pragmatic randomized controlled trial (RCT) in three outpatient adult Neurology clinic settings. This two-arm trial compared the effectiveness of Interruptive and Non-Interruptive Clinical Decision Support (CDS) to prompt further screening of suicidal ideation for those predicted to be high risk using a real-time, validated statistical risk model of suicide attempt risk, with the decision to screen as the primary end point. Secondary outcomes included rates of suicidal ideation and attempts in both arms. Manual chart review of every trial encounter was used to determine if suicide risk assessment was subsequently documented. Results: From August 16, 2022, through February 16, 2023, our study randomized 596 patient encounters across 561 patients for providers to receive either Interruptive or Non-Interruptive CDS in a 1:1 ratio. Adjusting for provider cluster effects, Interruptive CDS led to significantly higher numbers of decisions to screen (42%=121/289 encounters) compared to Non-Interruptive CDS (4%=12/307) (odds ratio=17.7, p-value <0.001). Secondarily, no documented episodes of suicidal ideation or attempts occurred in either arm. While the proportion of documented assessments among those noting the decision to screen was higher for providers in the Non-Interruptive arm (92%=11/12) than in the Interruptive arm (52%=63/121), the interruptive CDS was associated with more frequent documentation of suicide risk assessment (63/289 encounters compared to 11/307, p-value<0.001). Conclusions: In this pragmatic RCT of real-time predictive CDS to guide suicide risk assessment, Interruptive CDS led to higher numbers of decisions to screen and documented suicide risk assessments. Well-powered large-scale trials randomizing this type of CDS compared to standard of care are indicated to measure effectiveness in reducing suicidal self-harm. ClinicalTrials.gov Identifier: NCT05312437.

2.
Sci Rep ; 14(1): 23429, 2024 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379449

RESUMO

Post marketing safety surveillance depends in part on the ability to detect concerning clinical events at scale. Spontaneous reporting might be an effective component of safety surveillance, but it requires awareness and understanding among healthcare professionals to achieve its potential. Reliance on readily available structured data such as diagnostic codes risks under-coding and imprecision. Clinical textual data might bridge these gaps, and natural language processing (NLP) has been shown to aid in scalable phenotyping across healthcare records in multiple clinical domains. In this study, we developed and validated a novel incident phenotyping approach using unstructured clinical textual data agnostic to Electronic Health Record (EHR) and note type. It's based on a published, validated approach (PheRe) used to ascertain social determinants of health and suicidality across entire healthcare records. To demonstrate generalizability, we validated this approach on two separate phenotypes that share common challenges with respect to accurate ascertainment: (1) suicide attempt; (2) sleep-related behaviors. With samples of 89,428 records and 35,863 records for suicide attempt and sleep-related behaviors, respectively, we conducted silver standard (diagnostic coding) and gold standard (manual chart review) validation. We showed Area Under the Precision-Recall Curve of ~ 0.77 (95% CI 0.75-0.78) for suicide attempt and AUPR ~ 0.31 (95% CI 0.28-0.34) for sleep-related behaviors. We also evaluated performance by coded race and demonstrated differences in performance by race differed across phenotypes. Scalable phenotyping models, like most healthcare AI, require algorithmovigilance and debiasing prior to implementation.


Assuntos
Registros Eletrônicos de Saúde , Processamento de Linguagem Natural , Humanos , Modelos Estatísticos , Feminino , Masculino , Tentativa de Suicídio , Adulto , Pessoa de Meia-Idade
3.
ACS Chem Neurosci ; 14(3): 340-350, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651763

RESUMO

Commonly known as "Quaaludes," methaqualone (1) is a sedative-hypnotic medication, with effects resembling barbiturates and other downers, that exerts its effects through modulation of γ-aminobutyric acid type A receptors (GABAAR). Following the discovery of the sedative and euphoric effects of methaqualone (1), it was quickly adopted by pharmaceutical companies and promoted by clinicians around the world as a "safe" sleeping pill option, and for a period it was available over the counter. The popularity of methaqualone (1) soared worldwide, and many people began to use it recreationally for its sedative-hypnotic-like psychoactive effects. Not long after its introduction, many individuals began to misuse the drug leading to overdoses and drug dependence which brought to light methaqualone's (1) addictive nature. In this review, the background, synthesis, pharmacology, metabolism, and pharmacokinetics of methaqualone (1) will be covered along with its discovery, history, and the derivatives that are currently available around the world through manufacture in clandestine laboratories.


Assuntos
Overdose de Drogas , Transtornos Relacionados ao Uso de Substâncias , Humanos , Metaqualona/farmacologia , Hipnóticos e Sedativos , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico
4.
JAMA Netw Open ; 6(11): e2342750, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938841

RESUMO

Importance: Suicide remains an ongoing concern in the US military. Statistical models have not been broadly disseminated for US Navy service members. Objective: To externally validate and update a statistical suicide risk model initially developed in a civilian setting with an emphasis on primary care. Design, Setting, and Participants: This retrospective cohort study used data collected from 2007 through 2017 among active-duty US Navy service members. The external civilian model was applied to every visit at Naval Medical Center Portsmouth (NMCP), its NMCP Naval Branch Health Clinics (NBHCs), and TRICARE Prime Clinics (TPCs) that fall within the NMCP area. The model was retrained and recalibrated using visits to NBHCs and TPCs and updated using Department of Defense (DoD)-specific billing codes and demographic characteristics, including expanded race and ethnicity categories. Domain and temporal analyses were performed with bootstrap validation. Data analysis was performed from September 2020 to December 2022. Exposure: Visit to US NMCP. Main Outcomes and Measures: Recorded suicidal behavior on the day of or within 30 days of a visit. Performance was assessed using area under the receiver operating curve (AUROC), area under the precision recall curve (AUPRC), Brier score, and Spiegelhalter z-test statistic. Results: Of the 260 583 service members, 6529 (2.5%) had a recorded suicidal behavior, 206 412 (79.2%) were male; 104 835 (40.2%) were aged 20 to 24 years; and 9458 (3.6%) were Asian, 56 715 (21.8%) were Black or African American, and 158 277 (60.7%) were White. Applying the civilian-trained model resulted in an AUROC of 0.77 (95% CI, 0.74-0.79) and an AUPRC of 0.004 (95% CI, 0.003-0.005) at NBHCs with poor calibration (Spiegelhalter P < .001). Retraining the algorithm improved AUROC to 0.92 (95% CI, 0.91-0.93) and AUPRC to 0.66 (95% CI, 0.63-0.68). Number needed to screen in the top risk tiers was 366 for the external model and 200 for the retrained model; the lower number indicates better performance. Domain validation showed AUROC of 0.90 (95% CI, 0.90-0.91) and AUPRC of 0.01 (95% CI, 0.01-0.01), and temporal validation showed AUROC of 0.75 (95% CI, 0.72-0.78) and AUPRC of 0.003 (95% CI, 0.003-0.005). Conclusions and Relevance: In this cohort study of active-duty Navy service members, a civilian suicide attempt risk model was externally validated. Retraining and updating with DoD-specific variables improved performance. Domain and temporal validation results were similar to external validation, suggesting that implementing an external model in US Navy primary care clinics may bypass the need for costly internal development and expedite the automation of suicide prevention in these clinics.


Assuntos
Modelos Estatísticos , Tentativa de Suicídio , Humanos , Masculino , Feminino , Estudos de Coortes , Estudos Retrospectivos , Atenção Primária à Saúde
5.
medRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076830

RESUMO

Post marketing safety surveillance depends in part on the ability to detect concerning clinical events at scale. Spontaneous reporting might be an effective component of safety surveillance, but it requires awareness and understanding among healthcare professionals to achieve its potential. Reliance on readily available structured data such as diagnostic codes risk under-coding and imprecision. Clinical textual data might bridge these gaps, and natural language processing (NLP) has been shown to aid in scalable phenotyping across healthcare records in multiple clinical domains. In this study, we developed and validated a novel incident phenotyping approach using unstructured clinical textual data agnostic to Electronic Health Record (EHR) and note type. It's based on a published, validated approach (PheRe) used to ascertain social determinants of health and suicidality across entire healthcare records. To demonstrate generalizability, we validated this approach on two separate phenotypes that share common challenges with respect to accurate ascertainment: 1) suicide attempt; 2) sleep-related behaviors. With samples of 89,428 records and 35,863 records for suicide attempt and sleep-related behaviors, respectively, we conducted silver standard (diagnostic coding) and gold standard (manual chart review) validation. We showed Area Under the Precision-Recall Curve of ∼ 0.77 (95% CI 0.75-0.78) for suicide attempt and AUPR ∼ 0.31 (95% CI 0.28-0.34) for sleep-related behaviors. We also evaluated performance by coded race and demonstrated differences in performance by race were dissimilar across phenotypes and require algorithmovigilance and debiasing prior to implementation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA