Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(38): 21852-21862, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34554163

RESUMO

The Cr/α-Al2O3(0001) interface has been explored by X-ray photoemission spectroscopy, X-ray absorption spectroscopy (XAS) and ab initio first-principles calculations of core level shifts including final state effects. After an initial oxidation via a reaction with residual surface OH but no reduction of the alumina substrate, Cr grows in a metallic form without any chemical effect on the initially oxidized Cr. However, Cr metal lacks crystallinity. Long-range (reflection high energy electron diffraction) and short-range (XAS) order are hardly observed. Thus photoemission combined with atomistic simulations becomes a unique tool to explore the chemistry and environment at the Cr/alumina interface. Cr 2p, O 1s and Al 2s shifted components are all explained by the formation of moieties involving Cr3+ and/or Cr4+ and of metallic Cr0, which supports the previously found Cr buffer mechanism for poorly adhesive metals. Beyond the situation under study, the present data demonstrate the ability of a combined experimental and theoretical approach of core-level shifts to exhaustively describe the general case of disordered metal/oxide interfaces.

2.
Phys Chem Chem Phys ; 22(37): 21453-21462, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32945324

RESUMO

The understanding of interfacial effects and adhesion at oxide-metal contacts is of key importance in modern technology. Metal-silica interfaces specifically are relevant in electronics, catalysis and nanotechnology. However, adhesion at these interfaces is hindered by a formation of siloxane rings on the silica surface which saturate the dangling bonds at stoichiometric terminations. In this context, we report a thorough density functional theory study of the interaction between ß-cristobalite and selected 3d transition metals under different oxygen conditions. For any given interface stoichiometry, we find a progressive decrease of the metal/silica interaction along the series, following the increase of metal electronegativity. Crucially, in presence of early transition metals (Ti or Cr) the surface siloxane rings are spontaneously broken, allowing for strong adhesion. Late transition metals interact only weakly with reconstructed surfaces, similarly to what was found for zinc. In absence of reconstruction, stoichiometric silica/metal contacts behave similarly to alumina/metal contacts, but display larger interactions across the interface. Based on these results, we show that early transition metal or stainless steel buffers can significantly improve the weak adhesion between silica and zinc, responsible for a poor performance of anti-corrosive galvanic zinc coatings on modern advanced high strength steels.

3.
Phys Chem Chem Phys ; 21(24): 13287-13295, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31183489

RESUMO

Silicate compounds are ubiquitous in nature and display a vast variety of structures and properties. Thin silicate films may also form under specific conditions at interfaces between metals and silica. In the present study, we focus on zinc silicate and present a thorough density functional theory-based study of polar and non-polar (001) surfaces of various stoichiometry of its tetragonal polymorph t-Zn2SiO4. At the non-polar surfaces, the main features are the existence of the chain reconstruction at the ZnO termination, and the presence of unsaturated surface silanols at the SiO2 termination. Stabilization of polar surfaces is provided by the formation of O22- peroxo groups, reduction of the surface or subsurface Si atoms or formation of Zn22+ groups, depending upon the surface stoichiometry. While the non-polar stoichiometric and ZnO rich terminations are the most stable in a large part of the accessible phase diagram, the SiO2 termination is less stable due to the absence of siloxane group formation. We show that, while bulk Zn2SiO4 is stable with respect to decomposition into the ZnO and SiO2 oxides, the same is not true for ultra-thin films due to the fundamental difference of silicate and silica surface energies. Preliminary results show that a similar conclusion could be drawn for Fe2SiO4. This study opens the way towards a deeper understanding and possible improvement of zinc adhesion at silica surfaces, of crucial industrial importance.

4.
Phys Chem Chem Phys ; 20(9): 6254-6263, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29431822

RESUMO

The weak interaction between zinc and silica is responsible for a poor performance of anti-corrosive galvanic zinc coatings on modern advanced high strength steels. With the goal of identifying its microscopic origin, we report an extensive ab initio study on the structural, electronic, and adhesion characteristics of a variety of model zinc/ß-cristobalite interfaces, representative for different oxidation conditions. We show that the weakness of the zinc-silica interaction at non polar interfaces is driven by the presence of surface siloxane rings. These latter are drastically detrimental to interface adhesion when intact and their breaking is impeded by a large energy barrier. Conversely, the characteristics of polar interfaces are principally driven by the capacity of zinc to screen the surface compensating charges and to form O-Zn bonds. This screening is especially efficient in an oxygen-rich environment where the substrate-induced partial oxidation of the zinc deposit produces a considerable enhancement of interface adhesion. The identified microscopic mechanisms of interface interactions furnish precious guidelines towards practical attempts to improve adhesion. In particular, processes which enable breaking the surface siloxane rings are expected to noticeably reinforce the interaction at non-polar interfaces.

5.
Phys Chem Chem Phys ; 20(22): 15581-15588, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29809208

RESUMO

The weak interaction between zinc and silica is responsible for the poor performance of anti-corrosive galvanic zinc coatings on modern advanced high-strength steels, which are fundamental in the automotive industry, and important for rail transport, shipbuilding, and aerospace. With the goal of identifying possible methods for its improvement, we report an ab initio study of the effect of surface hydroxylation on the adhesion characteristics of model zinc/ß-cristobalite interfaces, representative of various surface hydroxylation/hydrogenation conditions. We show that surface silanols resulting from dissociative water adsorption at the most stable stoichiometric (001) and (111) surfaces prevent strong zinc-silica interactions. However, dehydrogenation of such interfaces produces oxygen-rich zinc/silica contacts with excellent adhesion characteristics. These are due to partial zinc oxidation and the formation of strong iono-covalent Zn-O bonds between zinc atoms and the under-coordinated excess anions, remnant of the hydroxylation layer. Interestingly, these interfaces appear as the most thermodynamically stable in a wide range of realistic oxygen-rich and hydrogen-lean environments. We also point out that the partial oxidation of zinc atoms in direct contact with the oxide substrate may somewhat weaken the cohesion in the zinc deposit itself. This fundamental analysis of the microscopic mechanisms responsible for the improved zinc wetting on pre-hydroxylated silica substrates provides useful guidelines towards practical attempts to improve adhesion.

6.
Phys Chem Chem Phys ; 18(4): 3032-9, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26738974

RESUMO

With the advent of new steel grades, galvanic protection by zinc coating faces a new paradigm. Indeed, enrichment in strengthening elements prone to oxidation, such as Al, Mn, and Si, leads to the formation of oxide films that are poorly wet by zinc. We study herein routes for the improvement of adhesion at the model Zn/α-Al2O3 interface by the addition of metals. As a first step, with the help of ab initio results on the adsorption characteristics of transition metal adatoms at α-alumina surfaces, we establish and rationalize clear trends in both the behavior of metal-alumina interaction strength and the relative thermodynamic stability of configurations with weakly and strongly bound metal adatoms. The reasons for the enhanced binding strength of transition metals, such as Cr, maintained regardless of the precise alumina termination and the surface charge state are pointed out. On these grounds, possible improvements of adhesion under realistic conditions are discussed. It is predicted that enrichment in transition metals, such as Cr, may produce strongly adhesive interfaces that lead to cohesive cleavage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA