Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 54(5): 947-961.e8, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33930308

RESUMO

The transcription factor Foxp3 plays crucial roles for Treg cell development and function. Conserved non-coding sequences (CNSs) at the Foxp3 locus control Foxp3 transcription, but how they developmentally contribute to Treg cell lineage specification remains obscure. Here, we show that among Foxp3 CNSs, the promoter-upstream CNS0 and the intergenic CNS3, which bind distinct transcription factors, were activated at early stages of thymocyte differentiation prior to Foxp3 promoter activation, with sequential genomic looping bridging these regions and the promoter. While deletion of either CNS0 or CNS3 partially compromised thymic Treg cell generation, deletion of both completely abrogated the generation and impaired the stability of Foxp3 expression in residual Treg cells. As a result, CNS0 and CNS3 double-deleted mice succumbed to lethal systemic autoimmunity and inflammation. Thus, hierarchical and coordinated activation of Foxp3 CNS0 and CNS3 initiates and stabilizes Foxp3 gene expression, thereby crucially controlling Treg cell development, maintenance, and consequently immunological self-tolerance.


Assuntos
Elementos Facilitadores Genéticos/imunologia , Fatores de Transcrição Forkhead/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Tolerância Imunológica/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/imunologia , Tolerância a Antígenos Próprios/imunologia
2.
Immunity ; 48(6): 1220-1232.e5, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29802020

RESUMO

Despite the importance of Th17 cells in autoimmune diseases, it remains unclear how they control other inflammatory cells in autoimmune tissue damage. Using a model of spontaneous autoimmune arthritis, we showed that arthritogenic Th17 cells stimulated fibroblast-like synoviocytes via interleukin-17 (IL-17) to secrete the cytokine GM-CSF and also expanded synovial-resident innate lymphoid cells (ILCs) in inflamed joints. Activated synovial ILCs, which expressed CD25, IL-33Ra, and TLR9, produced abundant GM-CSF upon stimulation by IL-2, IL-33, or CpG DNA. Loss of GM-CSF production by either ILCs or radio-resistant stromal cells prevented Th17 cell-mediated arthritis. GM-CSF production by Th17 cells augmented chronic inflammation but was dispensable for the initiation of arthritis. We showed that GM-CSF-producing ILCs were present in inflamed joints of rheumatoid arthritis patients. Thus, a cellular cascade of autoimmune Th17 cells, ILCs, and stromal cells, via IL-17 and GM-CSF, mediates chronic joint inflammation and can be a target for therapeutic intervention.


Assuntos
Artrite Reumatoide/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Linfócitos/imunologia , Células Estromais/imunologia , Células Th17/imunologia , Animais , Artrite Reumatoide/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Humanos , Linfócitos/metabolismo , Camundongos , Células Estromais/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Células Th17/metabolismo
3.
Blood ; 143(3): 243-257, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37922454

RESUMO

ABSTRACT: Regulation of lineage biases in hematopoietic stem and progenitor cells (HSPCs) is pivotal for balanced hematopoietic output. However, little is known about the mechanism behind lineage choice in HSPCs. Here, we show that messenger RNA (mRNA) decay factors regnase-1 (Reg1; Zc3h12a) and regnase-3 (Reg3; Zc3h12c) are essential for determining lymphoid fate and restricting myeloid differentiation in HSPCs. Loss of Reg1 and Reg3 resulted in severe impairment of lymphopoiesis and a mild increase in myelopoiesis in the bone marrow. Single-cell RNA sequencing analysis revealed that Reg1 and Reg3 regulate lineage directions in HSPCs via the control of a set of myeloid-related genes. Reg1- and Reg3-mediated control of mRNA encoding Nfkbiz, a transcriptional and epigenetic regulator, was essential for balancing lymphoid/myeloid lineage output in HSPCs in vivo. Furthermore, single-cell assay for transposase-accessible chromatin sequencing analysis revealed that Reg1 and Reg3 control the epigenetic landscape on myeloid-related gene loci in early stage HSPCs via Nfkbiz. Consistently, an antisense oligonucleotide designed to inhibit Reg1- and Reg3-mediated Nfkbiz mRNA degradation primed hematopoietic stem cells toward myeloid lineages by enhancing Nfkbiz expression. Collectively, the collaboration between posttranscriptional control and chromatin remodeling by the Reg1/Reg3-Nfkbiz axis governs HSPC lineage biases, ultimately dictating the fate of lymphoid vs myeloid differentiation.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Linhagem da Célula/genética , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Hematopoese/genética , RNA Mensageiro/metabolismo , Diferenciação Celular/genética
4.
EMBO Rep ; 25(3): 1176-1207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316902

RESUMO

For mucociliary clearance of pathogens, tracheal multiciliated epithelial cells (MCCs) organize coordinated beating of cilia, which originate from basal bodies (BBs) with basal feet (BFs) on one side. To clarify the self-organizing mechanism of coordinated intracellular BB-arrays composed of a well-ordered BB-alignment and unidirectional BB-orientation, determined by the direction of BB to BF, we generated double transgenic mice with GFP-centrin2-labeled BBs and mRuby3-Cep128-labeled BFs for long-term, high-resolution, dual-color live-cell imaging in primary-cultured tracheal MCCs. At early timepoints of MCC differentiation, BB-orientation and BB-local alignment antecedently coordinated in an apical microtubule-dependent manner. Later during MCC differentiation, fluctuations in BB-orientation were restricted, and locally aligned BB-arrays were further coordinated to align across the entire cell (BB-global alignment), mainly in an apical intermediate-sized filament-lattice-dependent manner. Thus, the high coordination of the BB-array was established for efficient mucociliary clearance as the primary defense against pathogen infection, identifying apical cytoskeletons as potential therapeutic targets.


Assuntos
Corpos Basais , Citoesqueleto , Camundongos , Animais , Microtúbulos , Cílios , Células Epiteliais
5.
Genes Dev ; 32(5-6): 359-372, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29563184

RESUMO

Bone marrow is the tissue filling the space between bone surfaces. Hematopoietic stem cells (HSCs) are maintained by special microenvironments known as niches within bone marrow cavities. Mesenchymal cells, termed CXC chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells or leptin receptor-positive (LepR+) cells, are a major cellular component of HSC niches that gives rise to osteoblasts in bone marrow. However, it remains unclear how osteogenesis is prevented in most CAR/LepR+ cells to maintain HSC niches and marrow cavities. Here, using lineage tracing, we found that the transcription factor early B-cell factor 3 (Ebf3) is preferentially expressed in CAR/LepR+ cells and that Ebf3-expressing cells are self-renewing mesenchymal stem cells in adult marrow. When Ebf3 is deleted in CAR/LepR+ cells, HSC niche function is severely impaired, and bone marrow is osteosclerotic with increased bone in aged mice. In mice lacking Ebf1 and Ebf3, CAR/LepR+ cells exhibiting a normal morphology are abundantly present, but their niche function is markedly impaired with depleted HSCs in infant marrow. Subsequently, the mutants become progressively more osteosclerotic, leading to the complete occlusion of marrow cavities in early adulthood. CAR/LepR+ cells differentiate into bone-producing cells with reduced HSC niche factor expression in the absence of Ebf1/Ebf3 Thus, HSC cellular niches express Ebf3 that is required to create HSC niches, to inhibit their osteoblast differentiation, and to maintain spaces for HSCs.


Assuntos
Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição/metabolismo , Fatores Etários , Animais , Medula Óssea/patologia , Diferenciação Celular , Linhagem da Célula , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/genética , Nicho de Células-Tronco , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética
6.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34930826

RESUMO

In mammals, circadian clocks are strictly suppressed during early embryonic stages, as well as in pluripotent stem cells, by the lack of CLOCK/BMAL1-mediated circadian feedback loops. During ontogenesis, the innate circadian clocks emerge gradually at a late developmental stage, and with these, the circadian temporal order is invested in each cell level throughout a body. Meanwhile, in the early developmental stage, a segmented body plan is essential for an intact developmental process, and somitogenesis is controlled by another cell-autonomous oscillator, the segmentation clock, in the posterior presomitic mesoderm (PSM). In the present study, focusing upon the interaction between circadian key components and the segmentation clock, we investigated the effect of the CLOCK/BMAL1 on the segmentation clock Hes7 oscillation, revealing that the expression of functional CLOCK/BMAL1 severely interferes with the ultradian rhythm of segmentation clock in induced PSM and gastruloids. RNA sequencing analysis implied that the premature expression of CLOCK/BMAL1 affects the Hes7 transcription and its regulatory pathways. These results suggest that the suppression of CLOCK/BMAL1-mediated transcriptional regulation during the somitogenesis may be inevitable for intact mammalian development.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Embrião de Mamíferos/metabolismo , Organoides/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Redes Reguladoras de Genes , Mesoderma/metabolismo , Camundongos , Proteínas Circadianas Period/genética , Somitos/crescimento & desenvolvimento , Somitos/metabolismo
7.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542258

RESUMO

As a space project, in "Stem Cells" by the Japan Aerospace Exploration Agency (JAXA), frozen mouse ES cells were stored on the International Space Station (ISS) in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) for 1584 days. After taking these cells back to the ground, the cells were thawed and cultured, and their gene expressions were comprehensively analyzed using RNA sequencing in order to elucidate the early response of the cells to long-time exposure to space radiation consisting of various ionized particles. The comparisons of gene expression involved in double-stranded break (DSB) repair were examined. The expressions of most of the genes that were involved in homologous recombination (HR) and non-homologous end joining (NHEJ) were not significantly changed between the ISS-stocked cells and ground-stocked control cells. However, the transcription of Trp53inp1 (tumor protein 53 induced nuclear protein-1), Cdkn1a (p21), and Mdm2 genes increased in ISS-stocked cells as well as Fe ion-irradiated cells compared to control cells. This suggests that accumulated DNA damage caused by space radiation exposure would activate these genes, which are involved in cell cycle arrest for repair and apoptosis in a p53-dependent or -independent manner, in order to prevent cells with damaged genomes from proliferating and forming tumors.


Assuntos
Quebras de DNA de Cadeia Dupla , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Reparo do DNA , Reparo do DNA por Junção de Extremidades , Análise de Sequência de RNA , Perfilação da Expressão Gênica
8.
Cancer Sci ; 114(10): 3935-3945, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482942

RESUMO

Tumors contain various stromal cells, such as immune cells, endothelial cells, and fibroblasts, which contribute to the development of a tumor-specific microenvironment characterized by hypoxia and inflammation, and are associated with malignant progression. In this study, we investigated the activity of intratumoral hypoxia-inducible factor (HIF), which functions as a master regulator of the cellular response to hypoxia and inflammation. We constructed the HIF activity-monitoring reporter gene hypoxia-response element-Venus-Akaluc (HVA) that expresses the green fluorescent protein Venus and modified firefly luciferase Akaluc in a HIF activity-dependent manner, and created transgenic mice harboring HVA transgene (HVA-Tg). In HVA-Tg, HIF-active cells can be visualized using AkaBLI, an ultra-sensitive in vivo bioluminescence imaging technology that produces an intense near-infrared light upon reaction of Akaluc with the D-luciferin analog AkaLumine-HCl. By orthotopic transplantation of E0771, a mouse triple negative breast cancer cell line without a reporter gene, into HVA-Tg, we succeeded in noninvasively monitoring bioluminescence signals from HIF-active stromal cells as early as 8 days after transplantation. The HIF-active stromal cells initially clustered locally and then spread throughout the tumors with growth. Immunohistochemistry and flow cytometry analyses revealed that CD11b+ F4/80+ macrophages were the predominant HIF-active stromal cells in E0771 tumors. These results indicate that HVA-Tg is a useful tool for spatiotemporal analysis of HIF-active tumor stromal cells, facilitating investigation of the roles of HIF-active tumor stromal cells in tumor growth and malignant progression.


Assuntos
Células Endoteliais , Neoplasias , Camundongos , Animais , Células Estromais , Hipóxia , Hipóxia Celular , Inflamação , Imagem Óptica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linhagem Celular Tumoral , Microambiente Tumoral
9.
Biol Reprod ; 108(4): 671-681, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36723878

RESUMO

Capacitation is an important event in the completion of fertilization by mammalian sperm. Cholesterol efflux is a trigger of capacitation. In general, cholesterol acceptors of albumin and ß-cyclodextrins are used to induce capacitation during in vitro fertilization. Previously, we reported that methyl-ß-cyclodextrin (MBCD), which is composed of seven glucoses, had a higher ability to induce capacitation than bovine serum albumin (BSA) in frozen-thawed mouse sperm. Comparison of albumin and cyclodextrins is helpful for understanding the mechanism of capacitation. In this study, we examined the effects of albumin, MBCD, and a different type of cyclodextrin, dimethyl-α-cyclodextrin (DMACD), which is composed of six glucoses, on several events of sperm capacitation. We showed that DMACD induced sperm capacitation and promoted fertilization ability. The time required to increase the fertilization rate differed among BSA, MBCD, and DMACD. BSA and MBCD enhanced cholesterol and phospholipid efflux, whereas DMACD enhanced only phospholipid efflux. BSA, MBCD, and DMACD increased sperm membrane fluidity, rearrangement of the lipid raft, and the acrosome reaction. These findings suggest that phospholipid efflux is a novel trigger of capacitation. Increasing the choice of sperm capacitation inducers may be useful for improving in vitro fertilization (IVF) techniques not only in mice, but also in various species in which it has been difficult to produce embryos by IVF.


Assuntos
Fosfolipídeos , Sêmen , Masculino , Animais , Camundongos , Fosfolipídeos/metabolismo , Fosfolipídeos/farmacologia , Sêmen/metabolismo , Espermatozoides/metabolismo , Colesterol/metabolismo , Capacitação Espermática , Soroalbumina Bovina/metabolismo , Soroalbumina Bovina/farmacologia , Membrana Celular/metabolismo , Mamíferos/metabolismo
10.
PLoS Genet ; 13(4): e1006696, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28426790

RESUMO

The cytoplasmic peptide:N-glycanase (Ngly1 in mammals) is a de-N-glycosylating enzyme that is highly conserved among eukaryotes. It was recently reported that subjects harboring mutations in the NGLY1 gene exhibited severe systemic symptoms (NGLY1-deficiency). While the enzyme obviously has a critical role in mammals, its precise function remains unclear. In this study, we analyzed Ngly1-deficient mice and found that they are embryonic lethal in C57BL/6 background. Surprisingly, the additional deletion of the gene encoding endo-ß-N-acetylglucosaminidase (Engase), which is another de-N-glycosylating enzyme but leaves a single GlcNAc at glycosylated Asn residues, resulted in the partial rescue of the lethality of the Ngly1-deficient mice. Additionally, we also found that a change in the genetic background of C57BL/6 mice, produced by crossing the mice with an outbred mouse strain (ICR) could partially rescue the embryonic lethality of Ngly1-deficient mice. Viable Ngly1-deficient mice in a C57BL/6 and ICR mixed background, however, showed a very severe phenotype reminiscent of the symptoms of NGLY1-deficiency subjects. Again, many of those defects were strongly suppressed by the additional deletion of Engase in the C57BL/6 and ICR mixed background. The defects observed in Ngly1/Engase-deficient mice (C57BL/6 background) and Ngly1-deficient mice (C57BL/6 and ICR mixed background) closely resembled some of the symptoms of patients with an NGLY1-deficiency. These observations strongly suggest that the Ngly1- or Ngly1/Engase-deficient mice could serve as a valuable animal model for studies related to the pathogenesis of the NGLY1-deficiency, and that cytoplasmic ENGase represents one of the potential therapeutic targets for this genetic disorder.


Assuntos
Doenças Genéticas Inatas/genética , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Animais , Citoplasma/enzimologia , Doenças Genéticas Inatas/terapia , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Deleção de Sequência/genética
11.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019549

RESUMO

Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform, PrPSc, is a key pathogenic event in prion diseases. However, the exact conversion mechanism remains largely unknown. Transgenic mice expressing PrP with a deletion of the central residues 91-106 were generated in the absence of endogenous PrPC, designated Tg(PrP∆91-106)/Prnp0/0 mice and intracerebrally inoculated with various prions. Tg(PrP∆91-106)/Prnp0/0 mice were resistant to RML, 22L and FK-1 prions, neither producing PrPSc∆91-106 or prions in the brain nor developing disease after inoculation. However, they remained marginally susceptible to bovine spongiform encephalopathy (BSE) prions, developing disease after elongated incubation times and accumulating PrPSc∆91-106 and prions in the brain after inoculation with BSE prions. Recombinant PrP∆91-104 converted into PrPSc∆91-104 after incubation with BSE-PrPSc-prions but not with RML- and 22L-PrPSc-prions, in a protein misfolding cyclic amplification assay. However, digitonin and heparin stimulated the conversion of PrP∆91-104 into PrPSc∆91-104 even after incubation with RML- and 22L-PrPSc-prions. These results suggest that residues 91-106 or 91-104 of PrPC are crucially involved in prion pathogenesis in a strain-dependent manner and may play a similar role to digitonin and heparin in the conversion of PrPC into PrPSc.


Assuntos
Encefalopatia Espongiforme Bovina/genética , Proteínas PrPC/genética , Proteínas PrPSc/genética , Deficiências na Proteostase/genética , Scrapie/genética , Deleção de Sequência , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Bovinos , Clonagem Molecular , Suscetibilidade a Doenças , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/patologia , Expressão Gênica , Injeções Intraventriculares , Camundongos , Camundongos Transgênicos , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPSc/administração & dosagem , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Scrapie/metabolismo , Scrapie/patologia , Especificidade da Espécie
12.
Genes Cells ; 23(2): 60-69, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29271044

RESUMO

The circadian clock, which regulates cellular physiology, such as energy metabolism, resides in each cell level throughout the body. Recently, it has been elucidated that the cellular circadian clock is closely linked with cellular differentiation. Moreover, the misregulation of cellular differentiation in mouse embryonic stem cells (ESCs) induced abnormally differentiated cells with impaired circadian clock oscillation, concomitant with the post-transcriptional suppression of CLOCK proteins. Here, we show that the circadian molecular oscillation is disrupted in dysdifferentiation-mediated mouse kidney tumors induced by partial in vivo reprogramming, resembling Wilms tumors. The expression of CLOCK protein was dramatically reduced in the tumor cells despite the Clock mRNA expression. We also showed that a similar loss of CLOCK was observed in human Wilms tumors, suggesting that the circadian molecular clockwork may be disrupted in dysdifferentiation-mediated embryonal tumors such as Wilms tumors, similar to the in vivo reprogramming-induced mouse kidney tumors. These results support our previous reports and may provide a novel viewpoint for understanding the pathophysiological nature of cancers through the correlation between cellular differentiation and circadian clock.


Assuntos
Diferenciação Celular , Relógios Circadianos , Ritmo Circadiano , Regulação da Expressão Gênica , Neoplasias Renais/patologia , Tumor de Wilms/patologia , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Células Cultivadas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/patologia , Transcriptoma , Tumor de Wilms/genética , Tumor de Wilms/metabolismo
13.
J Virol ; 92(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046443

RESUMO

Conformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is a key pathogenic event in prion diseases, including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals. We previously reported that the octapeptide repeat (OR) region could be dispensable for converting PrPC into PrPSc after infection with RML prions. We demonstrated that mice transgenically expressing mouse PrP with deletion of the OR region on the PrP knockout background, designated Tg(PrPΔOR)/Prnp0/0 mice, did not show reduced susceptibility to RML scrapie prions, with abundant accumulation of PrPScΔOR in their brains. We show here that Tg(PrPΔOR)/Prnp0/0 mice were highly resistant to BSE prions, developing the disease with markedly elongated incubation times after infection with BSE prions. The conversion of PrPΔOR into PrPScΔOR was markedly delayed in their brains. These results suggest that the OR region may have a crucial role in the conversion of PrPC into PrPSc after infection with BSE prions. However, Tg(PrPΔOR)/Prnp0/0 mice remained susceptible to RML and 22L scrapie prions, developing the disease without elongated incubation times after infection with RML and 22L prions. PrPScΔOR accumulated only slightly less in the brains of RML- or 22L-infected Tg(PrPΔOR)/Prnp0/0 mice than PrPSc in control wild-type mice. Taken together, these results indicate that the OR region of PrPC could play a differential role in the pathogenesis of BSE prions and RML or 22L scrapie prions.IMPORTANCE Structure-function relationship studies of PrPC conformational conversion into PrPSc are worthwhile to understand the mechanism of the conversion of PrPC into PrPSc We show here that, by inoculating Tg(PrPΔOR)/Prnp0/0 mice with the three different strains of RML, 22L, and BSE prions, the OR region could play a differential role in the conversion of PrPC into PrPSc after infection with RML or 22L scrapie prions and BSE prions. PrPΔOR was efficiently converted into PrPScΔOR after infection with RML and 22L prions. However, the conversion of PrPΔOR into PrPScΔOR was markedly delayed after infection with BSE prions. Further investigation into the role of the OR region in the conversion of PrPC into PrPSc after infection with BSE prions might be helpful for understanding the pathogenesis of BSE prions.


Assuntos
Suscetibilidade a Doenças , Encefalopatia Espongiforme Bovina/fisiopatologia , Proteínas PrPC/química , Proteínas PrPC/fisiologia , Doenças Priônicas/fisiopatologia , Príons/patogenicidade , Animais , Encéfalo/patologia , Bovinos , Encefalopatia Espongiforme Bovina/prevenção & controle , Humanos , Camundongos , Camundongos Transgênicos , Oligopeptídeos/química , Oligopeptídeos/genética , Proteínas PrPC/genética , Doenças Priônicas/prevenção & controle , Príons/química , Príons/genética , Deleção de Sequência
14.
Immunity ; 33(3): 387-99, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20850355

RESUMO

Hematopoietic stem cells (HSCs) and their lympho-hematopoietic progeny are supported by microenvironmental niches within bone marrow; however, the identity, nature, and function of these niches remain unclear. Short-term ablation of CXC chemokine ligand (CXCL)12-abundant reticular (CAR) cells in vivo did not affect the candidate niches, bone-lining osteoblasts, or endothelial cells but severely impaired the adipogenic and osteogenic differentiation potential of marrow cells and production of the cytokines SCF and CXCL12 and led to a marked reduction in cycling lymphoid and erythroid progenitors. HSCs from CAR cell-depleted mice were reduced in number and cell size, were more quiescent, and had increased expression of early myeloid selector genes, similar to the phenotype of wild-type HSCs cultured without a niche. Thus, the niche composed of adipo-osteogenic progenitors is required for proliferation of HSCs and lymphoid and erythroid progenitors, as well as maintenance of HSCs in an undifferentiated state.


Assuntos
Adipogenia , Células-Tronco Hematopoéticas/fisiologia , Osteogênese , Células-Tronco/fisiologia , Adipócitos/citologia , Animais , Diferenciação Celular , Células Cultivadas , Quimiocina CXCL12/fisiologia , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Fator de Células-Tronco/genética
15.
Genes Cells ; 22(5): 493-500, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28425215

RESUMO

It is well known that mammalian sperm acquires fertilization ability after several maturation processes, particularly within the female reproductive tract. In a previous study, we found that both glycosylphosphatidylinositol (GPI)-anchored protein (GPI-AP) release and lipid raft movement occur during the sperm maturation process. In several genetic studies, release of GPI-AP is a crucial step for sperm fertilization ability in the mouse. Here, we show that lipid raft movement is also fundamental for sperm to be competent for fertilization by comparing the sperm maturation process of two mouse inbred strains, C57BL/6 and BALB/c. We found that ganglioside GM1 movement was exclusively reduced in BALB/c compared with C57BL/6 among other examined sperm maturation parameters, such as GPI-AP release, sperm migration to the oviduct, cholesterol efflux, protein tyrosine phosphorylation and acrosome reaction, and was strongly linked to sperm fertility phenotype. The relationship between GM1 movement and in vitro fertilization ability was confirmed in other mouse strains, suggesting that lipid raft movement is one of the important steps for completing the sperm maturation process.


Assuntos
Fertilização , Microdomínios da Membrana/metabolismo , Espermatozoides/metabolismo , Animais , Colesterol/metabolismo , Feminino , Gangliosídeo G(M1)/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Motilidade dos Espermatozoides , Espermatogênese , Espermatozoides/citologia , Espermatozoides/fisiologia
16.
Development ; 141(10): 2157-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24803661

RESUMO

Mammalian sperm undergo multiple maturation steps after leaving the testis in order to become competent for fertilization, but the molecular mechanisms underlying this process remain unclear. In terms of identifying factors crucial for these processes in vivo, we found that lipocalin 2 (Lcn2), which is known as an innate immune factor inhibiting bacterial and malarial growth, can modulate sperm maturation. Most sperm that migrated to the oviduct of wild-type females underwent lipid raft reorganization and glycosylphosphatidylinositol-anchored protein shedding, which are signatures of sperm maturation, but few did so in Lcn2 null mice. Furthermore, we found that LCN2 binds to membrane phosphatidylethanolamine to reinforce lipid raft reorganization via a PKA-dependent mechanism and promotes sperm to acquire fertility by facilitating cholesterol efflux. These observations imply that mammals possess a mode for sperm maturation in addition to the albumin-mediated pathway.


Assuntos
Proteínas de Fase Aguda/metabolismo , Lipocalinas/metabolismo , Microdomínios da Membrana/fisiologia , Proteínas Oncogênicas/metabolismo , Fosfatidiletanolaminas/metabolismo , Maturação do Esperma/genética , Proteínas de Fase Aguda/genética , Animais , Células CHO , Colesterol/metabolismo , Cricetinae , Cricetulus , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Feminino , Fertilidade/genética , Lipocalina-2 , Lipocalinas/genética , Masculino , Fluidez de Membrana/genética , Microdomínios da Membrana/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Movimento , Proteínas Oncogênicas/genética , Gravidez , Ligação Proteica/fisiologia
17.
Arch Virol ; 162(7): 1867-1876, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28255815

RESUMO

The N-terminal polybasic region of the normal prion protein, PrPC, which encompasses residues 23-31, is important for prion pathogenesis by affecting conversion of PrPC into the pathogenic isoform, PrPSc. We previously reported transgenic mice expressing PrP with residues 25-50 deleted in the PrP-null background, designated as Tg(PrP∆preOR)/Prnp 0/0 mice. Here, we produced two new lines of Tg(PrP∆preOR)/Prnp 0/0 mice, each expressing the mutant protein, PrP∆preOR, 1.1 and 1.6 times more than PrPC in wild-type mice, and subsequently intracerebrally inoculated RML and 22L prions into them. The lower expresser showed slightly reduced susceptibility to RML prions but not to 22L prions. The higher expresser exhibited enhanced susceptibility to both prions. No prion transmission barrier was created in Tg(PrP∆preOR)/Prnp 0/0 mice against full-length PrPSc. PrPSc∆preOR accumulated in the brains of infected Tg(PrP∆preOR)/Prnp 0/0 mice less than PrPSc in control wild-type mice, although lower in RML-infected Tg(PrP∆preOR)/Prnp 0/0 mice than in 22L-infected mice. Prion infectivity in infected Tg(PrP∆preOR)/Prnp 0/0 mice was also lower than that in wild-type mice. These results indicate that deletion of residues 25-50 only slightly affects prion susceptibility, the conversion of PrPC into PrPSc, and prion infectivity in a strain-specific way. PrP∆preOR retains residues 23-24 and lacks residues 25-31 in the polybasic region. It is thus conceivable that residues 23-24 rather than 25-31 are important for the polybasic region to support prion pathogenesis. However, other investigators have reported that residues 27-31 not 23-24 are important to support prion pathogenesis. Taken together, the polybasic region might support prion pathogenesis through multiple sites including residues 23-24 and 27-31.


Assuntos
Doenças Priônicas , Proteínas Priônicas/metabolismo , Sequência de Aminoácidos , Animais , Suscetibilidade a Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Priônicas/genética , Sequências Repetitivas de Aminoácidos , Deleção de Sequência
18.
Genes Cells ; 20(12): 992-1005, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26456390

RESUMO

Methyl-CpG-binding protein 2 (Mecp2) is an X-linked gene encoding a methylated DNA-binding nuclear protein which regulates transcriptional activity. The mutation of MECP2 in humans is associated with Rett syndrome (RTT), a neurodevelopmental disorder. Patients with RTT frequently show abnormal sleep patterns and sleep-associated problems, in addition to autistic symptoms, raising the possibility of circadian clock dysfunction in RTT. In this study, we investigated circadian clock function in Mecp2-deficient mice. We successfully generated both male and female Mecp2-deficient mice on the wild-type C57BL/6 background and PER2(Luciferase) (PER2(Luc)) knock-in background using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. Generated Mecp2-deficient mice recapitulated reduced activity in mouse models of RTT, and their activity rhythms were diminished in constant dark conditions. Furthermore, real-time bioluminescence imaging showed that the amplitude of PER2(Luc)-driven circadian oscillation was significantly attenuated in Mecp2-deficient SCN neurons. On the other hand, in vitro circadian rhythm development assay using Mecp2-deficient mouse embryonic stem cells (ESCs) did not show amplitude changes of PER2(Luc) bioluminescence rhythms. Together, these results show that Mecp2 deficiency abrogates the circadian pacemaking ability of the SCN, which may be a therapeutic target to treat the sleep problems of patients with RTT.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Proteínas Circadianas Period/genética , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , Núcleo Supraquiasmático/metabolismo , Animais , Sistemas CRISPR-Cas , Diferenciação Celular , Células Cultivadas , Ritmo Circadiano , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Circadianas Period/metabolismo , Síndrome de Rett/metabolismo
19.
Proc Natl Acad Sci U S A ; 110(20): 8111-6, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23633567

RESUMO

Formation of spermatozoa of normal shape, number, and motility is insufficient for the male siring of pups. The spermatozoa must be accompanied by sound fertilizing ability. We found that males with disrupted testis-expressed gene 101 (Tex101) produce normal-looking but fertilization-incompetent spermatozoa, which were accompanied by a deficiency of a disintegrin and metallopeptidase domain 3 (ADAM3) on sperm plasma membrane. It was also found that the existence of TEX101 on spermatozoa was regulated by angiotensin-converting enzyme (ACE). The removal of GPI-anchored protein TEX101 by ACE was essential to produce fertile spermatozoa, and the function of ACE was not depending on its well-known peptidase activity. The finding of TEX101 as a unique specific substrate for ACE may provide a potential target for the production of an awaited contraceptive medicine for men.


Assuntos
Antígenos de Superfície/metabolismo , Peptidil Dipeptidase A/metabolismo , Espermatozoides/metabolismo , Proteínas ADAM/metabolismo , Animais , Feminino , Proteínas Ligadas por GPI/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peptídeo Hidrolases/metabolismo , Fenótipo , Testículo/metabolismo , Zona Pelúcida/metabolismo
20.
Development ; 139(4): 749-59, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22241836

RESUMO

Covalent modifications of histones play an important role in chromatin architecture and dynamics. In particular, histone lysine methylation is important for transcriptional control during diverse biological processes. The nuclear protein Jmjd5 (also called Kdm8) is a histone lysine demethylase that contains a JmjC domain in the C-terminal region. In this study, we have generated Jmjd5-deficient mice (Jmjd5(Δ)(/)(Δ)) to investigate the in vivo function of Jmjd5. Jmjd5(Δ)(/)(Δ) embryos showed severe growth retardation, resulting in embryonic lethality at the mid-gestation stage. Mouse embryonic fibroblasts (MEFs) derived from Jmjd5 hypomorphic embryos (Jmjd5(neo/neo)) also showed the growth defect. Quantitative PCR analysis of various cell cycle regulators indicated that only Cdkn1a expression was upregulated in Jmjd5(neo/neo) MEFs and Jmjd5(Δ)(/)(Δ) embryos. A knockdown assay with Cdkn1a-specific small interfering RNAs revealed that the growth defect of Jmjd5(neo/neo) MEFs was significantly rescued. In addition, a genetic study using Jmjd5(Δ)(/)(Δ); Cdkn1a(Δ)(/)(Δ) double-knockout mice showed that the growth retardation of Jmjd5(Δ)(/)(Δ) embryos was partially rescued by Cdkn1a deficiency. Chromatin immunoprecipitation analysis showed that increased di-methylated lysine 36 of histone H3 (H3K36me2) and reduced recruitment of endogenous Jmjd5 were detected in the transcribed regions of Cdkn1a in Jmjd5(neo/neo) MEFs. Taken together, these results suggest that Jmjd5 physiologically moderates embryonic cell proliferation through the epigenetic control of Cdkn1a expression.


Assuntos
Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Inibidor de Quinase Dependente de Ciclina p21/genética , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Histonas/genética , Humanos , Hibridização In Situ , Histona Desmetilases com o Domínio Jumonji/genética , Lisina/metabolismo , Camundongos , Camundongos Knockout , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA