Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 114(5): 110465, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36038061

RESUMO

Plants are sessile organisms suffering severe environmental conditions. Drought stress is one of the major environmental issues that affect plant growth and productivity. Although complex regulatory gene networks of plants under drought stress have been analyzed extensively, the response mechanism in the early stage of drought stress is still rarely mentioned. Here, we performed transcriptome analyses on cotton samples treated for a short time (10 min, 30 min, 60 min, 180 min) using 10% PEG, which is used to simulate drought stress. The analysis of differently expressed genes (DEGs) showed that the number of DEGs in roots was obviously more than that in stems and leaves at the four time points and maintained >2000 FDEGs (DEGs appearing for the first time) from 10 min, indicating that root tissues of plants respond to drought stress quickly and continuously strongly. Gene ontology (GO) analysis showed that DEGs in roots were mainly enriched in protein modification and microtubule-based process. DEGs were found significantly enriched in phosphatidylinositol signaling system at 10 min through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, implying the great importance of phosphatidylinositol signal in the early stage of drought stress. What was more, two co-expression modules, which were significantly positively correlated with drought stress, were found by Weighted Gene Co-expression Network Analysis (WGCNA). From one of the co-expression modules, we identified a hub-gene Gohir.A07G058200, which is annotated as "phosphatidylinositol 3- and 4-kinase" in phosphatidylinositol signaling system, and found this gene may interact with auxin-responsive protein. This result suggested that Gohir.A07G058200 may be involved in the crosstalk of phosphatidylinositol signal and auxin signal in the early stage of drought stress. In summary, through transcriptome sequencing, we found that phosphatidylinositol signaling system is an important signal transduction pathway in early stage in response to drought stress, and it may interact with auxin signal transduction through phosphatidylinositol 3- and 4-kinase.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Ácidos Indolacéticos , Fosfatidilinositóis , Transdução de Sinais , Estresse Fisiológico/genética , Transcriptoma
2.
Sci Rep ; 8(1): 7331, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743516

RESUMO

Qinghai-Tibetan Plateau is the most sensitive region to global warming on Earth. Qinghai Lake, the largest lake on the plateau, has experienced evident area variation during the past several decades. To quantify the area changes of Qinghai Lake, a satellite-based survey based on Landsat images from the 1980s to 2010s has been performed. In addition, meteorological data from all the seven available stations on Qinghai-Tibetan Plateau has been analyzed. Area of Qinghai Lake shrank ~2% during 1987-2005, and then increased ~3% from 2005-2016. Meanwhile, the average annual temperature increased 0.319 °C/10 y in the past 50 years, where the value is 0.415 °C/10 y from 2005-2016. The structural equation modeling (SEM) shows that precipitation is the primary factor influencing the area of Qinghai Lake. Moreover, temperature might be tightly correlated with precipitation, snow line, and evaporation, thereby indirectly causes alternations of the lake area. This study elucidated the significant area variation of water body on the Qinghai-Tibetan Plateau under global warming since 1980s.

3.
Plant Physiol Biochem ; 116: 106-115, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28551417

RESUMO

The Gossypium harknessii background cytoplasmic male sterility (CMS) system has been used in cotton hybrid breeding in China. However, the mechanism underlying pollen abortion and fertility restoration in CMS remains to be determined. In this study, we used RNA-seq to identify critical genes and pathways associated with CMS in G. harknessii based CMS lines (588A), the near isogenic restorer lines (588R), and maintainer lines (588B). We performed an assembly of 80,811,676 raw reads into 89,939 high-quality unigenes with an average length of 698 bp. Among these, 72.62% unigenes were annotated in public protein databases and were classified into functional clusters. In addition, we investigated the changes in expression of genes between 588A and 588B (588R); the RNA-seq data showed 742 differentially expressed genes (DEGs) between 588A and 588B and 748 DEGs between 588A and 588R. They were mainly down-regulated in 588A and most of them distributed in metabolic and biosynthesis of secondary metabolites pathways. Further analysis revealed 23 pollen development related genes were differentially expressed between 588A and 588B. Numerous genes associated with tapetum development were down-regulated in 588A, implicating tapetum dysplasia may be a key reason for pollen abortion in CMS lines. Also, among DEGs between 588A and 588R, we identified two PPR genes which were highly up-regulated in restorer line. This study may provide assistance for detailed molecular analysis and a better understanding of harknessii based CMS in cotton.


Assuntos
Citoplasma/fisiologia , Gossypium/metabolismo , Infertilidade das Plantas/fisiologia , RNA de Plantas/genética , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Gossypium/fisiologia , Infertilidade das Plantas/genética
4.
Appl Biochem Biotechnol ; 180(6): 1243-1255, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27449222

RESUMO

The pentatricopeptide repeat (PPR) gene family is one of the largest gene families in plants. Most PPR genes are localized in mitochondria and chloroplasts functioning in regulation of plant growth and development, fertility restoration for cytoplasmic male sterility (CMS), and stress defense. In this study, using in silico cloning and PCR amplification with degenerate primers based on Arabidopsis PPR genes, we cloned eight new full-length PPR genes encoding protein sequences ranging from 458 to 875 amino acids, with 8 to 16 repetitive PPR elements in upland cotton and all of them lack introns. Expression analysis revealed that eight PPR genes were differently expressed in roots, stems, leaves, and floral buds. As for GhI12, its expression in floral buds at days 3-5 was significantly higher in line 777R (restorer line) than in line 777A (CMS line). Further tests with real-time PCR showed that GhI12 expression peaked at day 3 in 777R, followed by a gradual decline, while its expression fluctuated in 777A, peaking at day 5 and day 13. In addition, Gh155c17 and GhI12 were upregulated under salt stress. This is the first report of upland cotton PPR genes involved in salt stress response.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/genética , Família Multigênica , Proteínas de Plantas/genética , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gossypium/efeitos dos fármacos , Gossypium/fisiologia , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA