Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(10)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429329

RESUMO

Polar motion (PM) has a close relation to the Earth's structure and composition, seasonal changes of the atmosphere and oceans, storage of waters, etc. As one of the four major space geodetic techniques, doppler orbitography and radiopositioning integrated by satellite (DORIS) is a mature technique that can monitor PM through precise ground station positioning. There are few articles that have analyzed the PM series derived by the DORIS solution in detail. The aim of this research was to assess the PM time-series based on the DORIS solution, to better capture the time-series. In this paper, Fourier fast transform (FFT) and singular spectrum analysis (SSA) were applied to analyze the 25 years of PM time-series solved by DORIS observation from January 1993 to January 2018, then accurately separate the trend terms and periodic signals, and finally precisely reconstruct the main components. To evaluate the PM time-series derived from DORIS, they were compared with those obtained from EOP 14 C04 (IAU2000). The results showed that the RMSs of the differences in PM between them were 1.594 mas and 1.465 mas in the X and Y directions, respectively. Spectrum analysis using FFT showed that the period of annual wobble was 0.998 years and that of the Chandler wobble was 1.181 years. During the SSA process, after singular value decomposition (SVD), the time-series was reconstructed using the eigenvalues and corresponding eigenvectors, and the results indicated that the trend term, annual wobble, and Chandler wobble components were accurately decomposed and reconstructed, and the component reconstruction results had a precision of 3.858 and 2.387 mas in the X and Y directions, respectively. In addition, the tests also gave reasonable explanations of the phenomena of peaks of differences between the PM parameters derived from DORIS and EOP 14 C04, trend terms, the Chandler wobble, and other signals detected by the SSA and FFT. This research will help the assessment and explanation of PM time-series and will offer a good method for the prediction of pole shifts.

2.
Sensors (Basel) ; 19(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141928

RESUMO

For existing wireless network devices and smart phones to achieve available positioning accuracy easily, fingerprint localization is widely used in indoor positioning, which depends on the differences of the Received Signal Strength Indicator (RSSI) from the Wireless Local Area Network (WLAN) in different places. Currently, most researchers pay more attention to the improvement of online positioning algorithms using RSSI values, while few focus on the MAC (media access control) addresses received from the WLAN. Accordingly, we attempt to integrate MAC addresses and RSSI values simultaneously in order to realize indoor localization within multi-story buildings. A novel approach to indoor positioning within multi-story buildings is presented in this article, which includes two steps: firstly, to identify the floor using the difference of received MAC addresses in different floors; secondly, to implement further localization on the same floor. Meanwhile, clustering operation using MAC addresses as the clustering index is introduced in the online positioning phase to improve the efficiency and accuracy of indoor positioning. Experimental results show that the proposed approach can achieve not only the precise location with the horizontal accuracy of 1.8 meters, but also the floor where the receiver is located within multi-story buildings.

3.
PLoS One ; 10(7): e0133378, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26193101

RESUMO

To investigate the temporal-spatial distribution and evolutions of global Total Electron Content (TEC), we estimate the global TEC data from 1999 to 2013 by processing the GPS data collected by the International Global Navigation Satellite System (GNSS) Service (IGS) stations, and robustly constructed the TEC time series at each of the global 5°×2.5° grids. We found that the spatial distribution of the global TEC has a pattern where the number of TECs diminishes gradually from a low-latitude region to high-latitude region, and anomalies appear in the equatorial crest and Greenland. Temporal variations show that the peak TEC appears in equinoctial months, and this corresponds to the semiannual variation of TEC. Furthermore, the winter anomaly is also observed in the equatorial area of the northern hemisphere and high latitudes of the southern hemisphere. Morlet wavelet analysis is used to determine periods of TEC variations and results indicate that the 1-day, 26.5-day, semi-annual and annual cycles are the major significant periods. The fitting results of a quadratic polynomial show that the effect of solar activity on TEC is stronger in low latitudes than in mid-high latitudes, and stronger in the southern hemisphere than in the northern hemisphere. But the effect in low latitudes in the northern hemisphere is stronger than that in low latitudes in the southern hemisphere. The effect of solar activity on TECs was analyzed with the cross wavelet analysis and the wavelet coherence transformation, and we found that there appears to be a strong coherence in the period of about 27 days. So the sunspot as one index of solar activity seriously affects the TEC variations with the sun's rotation. We fit the TEC data with the least squares spectral analysis to study the periodic variations of TEC. The changing trend of TEC is generally -0.08 TECu per year from 1999 to 2013. So TECs decrease over most areas year by year, but TECs over the Arctic around Greenland maintained a rising trend during these 15 years.


Assuntos
Elétrons , Sistemas de Informação Geográfica , Atividade Solar , Análise Espacial , Regiões Antárticas , Regiões Árticas , Atmosfera/análise , Groenlândia , Imagens de Satélites , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA